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1. INTRODUCTION

Cancer is a class of diseases characterized bgpfaantrol cell growth and tissue invasion. Because
cancer initiation seems to depend on a seriesm@dtgemutations affecting intrinsic cellular progrs, to
date, the vast majority of cancer research hassetwn the identification and characterizationhafse
genetic and molecular properties of cancer ceisngelveg1). However, tumors are also heterogeneous
cellular entities whose growth is dependent upomadyical interactions among the cancer cells
themselves, and between cells and the constandiggohg microenvironmen{2). For example, such
interactions include signaling through cell adhesioolecules such as cadherins and integi®sand
differential cell responses to growth factors artbeo external signal¢4). All of these interactive
processes act together to control cell phenotypi@biors such as proliferation, apoptosis, and atign.
There is increasing consensus that these dynart@caations cannot be investigated purely by using
biological experiments, since experimental complexisually restricts the accessible spatial and
temporal scales of observations. Consequentlyf &gte there is a transition within the canceressh

community to treat and study cancer agstems disease.

Cancer systems biology is a newly emerging field that uses an interdigwgpy approach to provide the
systemic understanding of cancer initiation andgpssion by investigating how individual components
interact to give rise to the function and behawbrthe cancerous system as a wh(@g It seeks to
decipher emergent behavior rather than to focug emithe system’s constituents’ properties. In aoiali

to conventional biological and medical experimeatsystems approach often involves mathematical and
computational modeling to interpret and integrdite tmassive amount of data that experimentalists are
currently uncovering, especially in molecular aetl biology (6). In silico cancer models are necessarily

simplified, yet we argue can provide adequate sEr&tions of a particular cancer phenomenon to be
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investigated. In fact, such a theoretical apprdahbeen increasingly recognized as having thebdapa
1) to simulate experimental procedures and to apéirand predict clinical therapies and outcome, 2nd
to test and refine medical hypotheg@&s The development of a successiulsilico cancer model is a
long-term process, expected to be iteratively cotetl) with available experimental data used to guid

the model design, and to verify and validate moesults.

Most current computational cancer models focus amcer behaviors that occur at a single biological
scale(7), and the decades of dedicated efforts by cancelelas have made scale-specific models not
only possible, but advanced enough to be practarabpplications in oncology8). However, because
cancer growth and invasion indeed span multipléescaising a scale-specific model is insufficiamt t
uncover cross-scale mechanisms let alone to regredictions about the clinical outcome of the digea
system as a whol@®). Modeling cancegrcross different biological scales has recently begun lay @
more important role in moving the field of cancgstems biology towards clinical implementationtte
context of biology and physiology at large, a modetonsidered to be “multiscale” if it spans two o
more different spatial scales and/or includes p®ses that occur at two or more temporal scalesaugec

a multiscale cancer model has to quantify pararmeirr and relationships between biological processe

that occur at different scales, the complexity ofdel development is significantly increased.

In this review, we present representative works hlage investigated key questions on cancer pregnes
invasion, angiogenesis and metastasis using a stal®i modeling approach. Systems approaches
emphasize the integration and coordination betwsmanputational modeling and experimental efforts.
Hence, attention will be given to the evaluatiorthed models’ capacity to account forvitro, in vivo, or
clinical data, and more importantly, an analysihoiv the computational findings drive new hypotlsese

for further experimental investigation.
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2. MULTISCALE CANCER MODELING

Multiscale cancer modelers already have a wealtiseful, mostly scale-specific resources to refewrt
base their innovative work on, but they also fdeednormous challenge of developing more realistit
more accurate predictive models. The fundamengalar is that, when considering the increasing numbe
of components at multiple scales (whether in timepgace), more model parameters and the relatjosishi
between them will have to be defined, quantifiedd &equently adjusted according to data from the
literature, from experiments or clinics. Additiolyaldefining the linkage between different scalesgs a
significant barrier to model development; in mam@ges, the link is bidirectional, meaning that highe
and lower-level variables, parameters, and funstionaracterizing the model are influenced by each
other. Furthermore, it has proven challenging tap#gely interface discrete (individual-based) and
continuum (population-based) models while 1) emgurnathematical consistency between the models,
and 2) adequately conserving mass and momentum sviigching between the models; indeed, these are
continuing challenges in cutting-edge scientificmpaiting (10-11) Generally, when developing a
multiscale cancer model, particularly if with angtial application in mind, it is imperative to maxze

the accuracy and predictive power of the model evatlthe same time constraining the size of theeinod

as much as possible in order to produce tractaisigts within a reasonable time frame.

2.1. Concept: Integration of multiple hierarchies {n space and time)

Various definitions of biological scales have beesated in different life sciences fields (¢&8) for an
excellent review). We focus our discussion of nsakile on four main biological spatial scales: atomi
molecular, microscopic, and macroscopkig(re 1). While each of these spatial scales may have

multiple temporal scales, biological processes thké place at a lower-scale generally happen much
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faster than those at a higher-scale, i.e., spatidltemporal scales tend to vary together, witlvestao
faster at the temporal scale corresponding to em#dl larger at the spatial scale. In the following
briefly explain what processes occur at each afelfeur spatial scales and the main methods engbloye
to simulate these processes, all from the cancelelimg perspective and practice. We note here #zat,
also commented ifi.2), model design and development should take intowatcthe nature of the system
being modeled rather than simply follow an invaléahierarchical structure. That is, depending on
modeling purpose, it is no violation to merge twahe levels discussed here or to split one or nodre

them into distinct sub-levels.

Atomic scale: This scale is used to study the structure and ™inaroperties of proteins, peptides, and
lipids, as well as their dependence on the featoiréise environment or on ligand bindift3). The most
common modeling method used at this scale is mt@eclynamics (MD) simulation, where atoms and
molecules are allowed to interact for a periodimit Atomic-scale models deal with length scaletha

order of nm and time scales of ns.

Molecular scale:Models at this scale do not represent the moledylaamics of individual proteins, but
represent an average of the properties of a populat proteins. Cell signaling mechanisms, theuredt
regulators of biological systems, are usually itigaged at this scalél4). Analysis of this scale
constitutes an intensely active field of biomedicakearch and has the potential to provide new
therapeutic targets to combat disease. Signal duamtion starts with the binding of extracellular
molecules (ligands) to cell-surface receptors, @mds with a change in cell function. Most of therent
modeling efforts focus on this scale, adding insghto quantifying signal-response relationshipd a

signaling events that control cellular respongEs). Ordinary differential equations (ODES) are often
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used to represent biochemical reactions containeal signaling pathway. Molecular-scale models deal

with length scales in the order of npm and time scales qis~s.

Microscopic scale:This scale is also referred to as the tissue dticellular scale, and in our definition,

it also includes the cellular scale (i.e., singt# behaviors and properties). Individual cells epatained

in a selectively permeable cell membrgth6). Models at this scale must suitably describe tlaégnant
transformation of normal cells, associated altereti of cell-cell and cell-matrix interactions, the
heterogeneous tumor environment and the elemettinodr heterogeneity. These models usually use
partial differential equations (PDES) or agent-lbas®deling (ABM) rather than ODESs to simulate these
factors and processes. The simulation run timeimenease substantially if individual cell behaviare
investigated in fine detail. Tissue-scale modelsl @éth length scales in the order @ih~mm and time

scales of min~hour.

Macroscopic scale:Models at this scale focus on the dynamics ofdiuss tumor behavior including
morphology, shape, extent of vascularization, awdsion, under different environmental conditighg).
Microscopic details of tissue structure are avedageer short spatial scales to produce a descnipfo
the macroscopic-level tissue properties. At thialescbecause the number of cells in the model is
sufficiently large, it becomes possible and sometimecessary to treat some or all of the cellssisgie
continuum. This in turn allows for cell and subtgr&ansport to be modeled with conservation laovs f
spatiotemporally-varying densities (i.e., PDEs}thea than keeping track of individual cell actiggi
Models generally consider cell responses to gradieids of diverse origins, such as concentration
gradients of diffusible or non-diffusible moleculas well as strain and stress gradients generatéaeb
growing tumor mass. Macroscopic-scale models déal ength scales on the order of mm~cm and time

scales of day~year.
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Since lower-level processes are much faster,rgasonable to assume that they are in quasi-equitb
with the slower, higher-level processes, i.e., Iolggel processes can be included at the highel haa
e.g. constitutive equations or force field8). For example, if a reaction occurs on a very fias¢ scale,
then we can assume that the chemicals in thatioeaate in equilibrium. This assumption eliminates

of the differential equations from the integratgdtem, making its solution more straightforward éexs
computationally intensive, while still maintainirthe accuracy of the model. This type of multiscale
modeling, where lower-level processes (small spatiales, fasttlynamics) are coupled to higher-level
processes (large spatial scales, slow dynamics)idtived the most attention in the current qtegtite
cancer research field, and is particularly usefaémdeveloping multiscale models because the system

governing equations is generally large.

2.2. Modeling Techniques: discrete, continuum, hybd [Summary box]

Modeling cancer behaviors can involve techniquest #ire discrete, continuum, or hybrid, i.e. the
integration of both [seeSummary box. Continuum models are capable of capturing lasgale
volumetric tumor growth dynamics (which are alsocemsible to conventional clinical imaging
modalities) at a comparatively lesser computatiaast (19). Continuum descriptions of tumor growth
are also to some degree supported by fundamentaigah principles, and thus benefit from the
knowledge gained in this fiel@0). Despite these advantages, the averaging ove sgatized in
continuum formalisms often cannot fully account fioe diversity of cellular and sub-cellular dynaatic
features as well as genetic or epigenetic regylatechanisms exhibited at the individual cell leval
other words, a continuum technique is often a tesdseice when exploring tumor heterogeneity when th

cell properties vary over small spatiotemporal egailvhich is an inherent feature of cancer o@ls.
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Moreover, continuum models cannot easily descrioegsses where individual cell effects are impartan
or dominate, such as the epithelial-mesenchymastittan (EMT) procesg22). Alternatively, discrete
models are suitable to address these shortconsngs they operate at the scale of individual cetls
cell clusters. Discrete models can easily incongolaological rules (based on biomedical data da-da
driven assumptions), such as those defining cdllaed cell-matrix interactions involved in both
chemotaxis and haptotaxis. However, discrete teglas also have drawbacks. The most serious one is
the large computational demand when modeling eathirc fine detail, which limits the model to a
relatively small number of cells. As a result, pital discrete model is usually designed with a-sub
millimeter or lower domain siz€23). Furthermore, some effects (e.g., tissue biomeckpmre best
described at the macroscopic scale with continuechrtiqueg11). For these reasons, cancer modelers
are increasingly turning to hybrid techniques tbatnbine the benefits of both continuum and discrete
descriptions. In fact, in current discrete-basedlcea models, extracellular factors are often matlele

continuous quantities, thereby rendering the molagbsid in naturg9, 23)

[Summary Box - START]

Discrete modeling can explicitly represent indivatlgells in space and time, and track and update th
internal states according to a pre-defined set iofogical and biophysical rules. This approach is
particularly useful for studying carcinogenesishge instability, natural selection and cell-catid cell-
matrix interaction mechanisms. The dynamics of réteccancer cells can be investigated with lattice-
based or lattice-free methods, where the formddbuwai grid with a finite number of dimensions inigfh
cells live, while the latter describes cell actionsarbitrary locations and their interactions nirary
directions. Because discrete modeling is based serias of rules applied to each cell, it is pdssib

translate detailed biological findings into rules the model24). However, the computational demand
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increases rapidly with the number of cells modelediting these models in the spatial and temporal

scales they can represent.

Continuum modeling describes tumor tissue as aroani medium rather than working at the resolution
of individual cells, and thus is a good choice foodeling larger-scale systems. This approach draws
upon principles from continuum mechanics to degcnindel variables as continuous fields mostly by
means of partial differential or integro-differaitequations. Common continuum model variables,(e.g
cell volume fractions, density, and cell subst@gecentrations, e.g. nutrient, oxygen, and groathadrs)

are somewhat easier to obtain, analyze, and cordoohpared with those in the discrete cé2®g).
Although these models can characterize global ptiggeof gross tumor growth and invasion at theuts

or higher-scales, they cannot be used to examidigidual cell dynamics and discrete events, such as
EMT, since in a process that small, changes tdlarca set of cells can move a nonlinear cancetesy

to a different stat€26). This may be important when studying the effedtsggenetic, cellular, and

microenvironment characteristics on overall tumelndovior.

Hybrid modeling attempts to integrate and draw be strengths of both continuum and discrete
descriptions. Different definitions on hybrid moidgl exist in the filed(9-10, 23) but in this article,
hybrid models are roughly divided into two categericomposite and adaptive hybrid modeling. In
composite hybrid models, individual cells are teglatliscretely but interact with other chemical and
mechanical continuum fields. Under appropriate faisms, such models are able to couple different
scales impacted by the growth process with bioglaysbiochemical, and biomechanical information
passed between scales. In adaptive hybrid modetk, discrete and continuum representations of cells
are chosen dynamically and adaptively where appatpre.g., discrete modeling for EMT and

continuum modeling for the tumor bulk. Thus, thetive hybrid modeling can achieve discretely high
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resolution wherever and whenever necessary, whitkeasame time reducing the compute intensity as
much as possible to support scalability of the apph to clinically relevant levels. Together, aligb
continuum and discrete approaches have each prbuigigortant insights into cancer-related processes
occurring at particular spatial and temporal scales complexity of cancer and the interactions ragno
the cells and their complex tumor environment faalla multiscale continuum-discrete (hybrid) apmtoa
(10). Hybrid models have the potential to couple biatabphenomena from the molecular and cellular
scales to the tumor scale.

[Summary Box - END]

2.3. Case Studies:

Regardless of which techniques are used to dexetmcer model, all of them are abstractions dityea

All hypotheses on which the models are based wiineually prove to be incomplete in one way or
anothern(27). However, models have the advantage of being gaaw and interactive rather than solely
descriptive. Thus, modeling and experimentatioeancer research can and should work cooperatively,
supplement, and promote each other. In the follgwwe highlight some of the most recent and
representative multiscale modeling works that destrate the importance and necessity of this approac

in current cancer research.

2.3.1. Atomic — Molecular

Epidermal growth factor receptor (EGFR) is freqlyeaverexpressed and mutated in a variety of cancer
and as a result, small molecule tyrosine kinaséituns for EGFR are of significant interest asiant

cancer drug$28). It has been reported that cytosolic signalinggins bind to different phospho-tyrosine

10
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docking sites of EGFR, which may cause differenpatterns of EGFR downstream signali(&p).
Hence, quantifying the difference in wild-type andtant EGFR signaling and accounting for differainti
signaling through different phospho-tyrosines dogksites of EGFR is useful in identifying the raied

significance of drug sensitizing mutations of EGRRancers.

Radhakrishnan and co-workers have been developuigsoale models across atomic and molecular
scales to understand the mechanisms of how alsegedling induced by point-mutations in EGFR leads
to the onset of oncogenic transformations. In n®detesented in(30-31) they mathematically
implemented a wild-type and a mutant EGFR activatitechanism, which differ in that the wild-type
receptor tyrosine kinase (RTK) initiates phosphatigh of C-terminal tail substrate tyrosines ontyaa
dimer, whereas the mutants can initiate phosphioylaas a monomer and as a dimer. In order to
translate these context-specific phospho-tyrosinechanisms into differences in the downstream
response, they introduced a branched signalingoapprthrough EGFR. As shown kigure 2, two
parallel phosphorylation pathways are implemented,esponding to tyrosine 1068 (Y1068) and tyrosine
1173 (Y1173), where phosphorylated Y1068 (pY106&)dé only to Gab-1 and Grb2, while
phosphorylated Y1173 (pY1173) binds only to Shccaédingly, phosphorylation events at the Y1068
and Y1173 sites transduce signals through differgighaling routes. This approach allows for
transcribing the effects of somatic mutations (LR3dnd Del) in the EGFR to different downstream
responses in phosphorylated ERK (ERK-p) and Aktt{#)kin the EGF-induced signaling pathwgsa-
32). Using these models, the authors successfullyigieztithat the ratio of Akt-p/ERK-p increases in
mutants compared to wild-tyg83), and found that the perturbation of the phosplusipe kinetics of
Y1068 and Y1173 through mutations is directly respble for the differential signaling leading to
preferential Akt activation. They also investigatld inhibitory effects of small molecule tyrosikiease

inhibitors on EGFR phosphorylation and downstredRiKEnd Akt activation.

11
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Another major finding of their models is that tHenically identified mutations of EGFR kinase in@uc
network fragility in the stabilizing interaction$ the inactive kinase conformation. This in turoyides a
persistent stimulus for kinase activation evenhia absence of any growth factor. Moreover, paramete
that drive network hypersensitivity through the anéement of phosphorylated ERK and Akt levels show
a striking correlation with observed mutations pédfic proteins in oncogenic cell lines as wellths
observed mechanisms of drug resistance to EGFRviimm. Therefore, the authors suggested that
cascading mechanisms of network hypersensitivityfeagility may enable molecular-level perturbason
(clinical mutations) to induce oncogenic transfotioras and mechanisms of drug resistaf8¥e32) As a
specific example, they described a possible meshaifor preferential Akt activation in non-small Icel
lung cancer (NSCLC) harboring EGFR activating matet. This preferential Akt activation makes these
mutant cell lines conducive to oncogenic addictamg this pathway addiction mechanism also regults
a remarkable sensitivity to EGFR kinase inhibitidihese structural studies on kinase activationhman
used to forecast the mutation landscape assoaiatikeebther ErbB family members that may have ndt ye

been reporte(B4).

2.3.2. Molecular — Microscopic

Cancer models across molecular and microscopieseak important and necessary due to (at least) tw
characteristics of cancer. One is that cancer delyiviewed as a disease involving irreversibleayeic
changes affecting intrinsic cellular prografd3, and thus it is difficult for wet-lab cancer resgeers to
trust a cancer model which misses correlations akoular-level alterations with cancer cell propesrt
The other is that cancer is a context-dependertd&35). depending on different microenvironments,

cancer cells and the emergent tumor exhibit differphenotypes and behaviors. Cancer models

12
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introduced in this section are discrete-based nsobletause they need to function on a single c&dl,le
and most of them use ABM technique. ABM is of pardar interest to cancer modelers because it helps
to address the role of diversity in cell populaticend also within each individual cell, which irrrtu
enables us to explore how cancer growth and inagsaiterns (due to cell proliferation and migra}ion
emerge as a result of individual dynamics, inclgdoell-cell and cell-environment interactions and
intracellular signaling of individual cells. In tHellowing, we introduce the development of somehef

most recent molecular-microscopic cancer models.

Signaling dynamics of individual cells influencingmicroscopic tumor outcome:Deisboeck and co-

workers have been working extensively on the dgraknt of molecular-microscopic ABMs to simulate
tumor properties within both brain tumors and NSCO®@eir models aim to quantify the relationship
between extracellular stimuli, intracellular signgl dynamics, and multicellular tumor growth and
expansion. At the molecular level are signalinghpatys induced by growth factors and mediated by
growth factor receptors. Similar to general pathaaglysis studies, the pathway models are implesdent
using ODEs. At the microscopic level is a biochahimicroenvironment constructed to represent a
virtual tissue in a two dimensional (2D) or thramensional (3D) domain. Heterogeneous environments
are attained by distributing external diffusive icteal cues (such as growth factors, glucose, aygerx
tension) throughout the microenvironment. Throughba simulation, the concentrations of the chemica
cues are continuously diffused and updated at edfisate based on PDEs. Each cell carries a self-
maintained signaling pathway or networked pathwaynlmination, meaning that cells will differ in

signaling profiles and thus will exhibit differephenotypic behaviors as the simulation progresses.

A molecular-level module, i.e., an EGFR signalirsghpvay, was first incorporated into a 2D brain tumo

model to study and describe how context-dependeglescell activities potentially affect the dynarsi

13
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of the entire tumor systerf36). In this model, an experimentally-supported malady-driven cellular
phenotypic decision algorithm was established tok limolecular changes to cell phenotype
determinations. It is noteworthy that, for procegsiphenotype transitions, a series of subsequent
modeling works all adopt this algorithm directly, @ variety of it. We briefly demonstrate how this
algorithm determines the cell’'s migration fate. Exmental studies have shown that the transient
acceleration of accumulating phospholipage(ELCy) levels leads to cell migratiof87), and thus the
rate of change of PLyCcan be used to determine the cellular migratioeisiten. In this algorithm, the

potential for any individual tumor cell to migratewas assessed by evaluating

M, [(PLCy)] =[d(PLCy)/dt] , whered(PLCy)/dt is the change in concentration of RLGver time.t,

for a cell with an ID); if M, exceeds a pre-specified threshold, then the eelbines eligible to migrate;
otherwise it can proliferate or become quiescemt. (t neither proliferates nor migrates yet remain
viable). Note that a cell additionally has to me#her microenvironmental requirements, such as
sufficient local nutrient conditions and availald€ejacent space, in order to proliferate or migrate
successfully. In a follow-up stud§88), increasing the EGFR density per cell was foundetm to an
acceleration of the entire tumor system’s spatip@ma expansion dynamics in accordance with
experimental daté39). To simulate brain tumor growth in a more reatisticroenvironment, a 3D model
was developed40), where a simplified cell-cycle description based(41) and a more complicated
extracellular matrix representation were implemeént8imulation results indicated that over time,
proliferative and migratory cell populations osaié and have a direct effect on the entire spatjpteal
tumor expansion pattern. Using the 3D mo@#)), an element of genetic instability was added, to
investigate how heterogeneity impacts brain tunmmogpession patterng@l2). The extended model found
that cell clones with higher EGFR density are casgat of a larger migratory fraction and smaller

proliferative and quiescent fractions, a result dgrees well with reported experimental dét2).

14
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EGFR signaling also plays a vital role in the pg#mesis and progression of NSCI42}). Deisboeck,
Wang and colleagues attempted to look into howntkéhods applied to modeling brain tumors could be
applied to the case of NSCLC. They also explored ghssibility of using a cross-scale approach to
determine critical molecular parameters that haveigmificant impact on tumor outcome at the
microscopic level45). A multiscale NSCLC model was first developed,hndt revised EGF-induced
EGFR-mediated signaling pathway implemented at m@ecular level and a 2D heterogeneous
biochemical tumor growth environment implementedhat microscopic level46). This model revised
the previous cellular phenotypic decision algoritbsed in the brain tumor models by adding another
decision molecule, ERK, in determining the cell'solgeration fate. This was also based on an
experimental study which reported that the trarisaateleration of accumulating ERK concentration
levels triggers cell replicatiof@ 7). Figure 3a demonstrates this essential algorithm. With tRSNSCLC
model, they found that a minimal increase in EGRcemtration can temporarily abolish the proliferati
phenotype in the cancer cell closest to the nutsearce. More recently, Wang et @8) presented a 3D
model in which both EGF and transforming growthtdadeta (TGB) as well as their interplay were
taken into account. This model was used to invasidiow the effects of individual and combined
changes in EGF and T@Fconcentrations at the molecular level alter tumgowth dynamics on the
multicellular level, i.e., tumor volume and expamsrate. As shown ifigure 3b, when EGF and TGF
concentrations were jointly varied asynchronouddy,particular region of tumor system stability,
generated by unique pairs of EGF and BG#ncentration variations, was discovered. The ksited
tumor system became sensitive to external variationEGF and/or TGFwhen they occurred outside
this robust region. The expansion rate for thedsesh simulation (with all kinetic parameters setheir
reference values) was 2.07 um/hr, which is in \gogd agreement with both computational modeling

(49) and experimental studi€s0).

15
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Tumor microenvironment _and genotype-to-phenotype mpping: The importance of the tumor

microenvironment is currently of great interesbaih the biological and the modeling communitigs).

To investigate the impact of the microenvironmenttbe tumor growth dynamics, a series of hybrid
ABMs were developed by Gerlee and Anderson. Eadh icetheir models was equipped with a
microenvironment response network modeled usirepd-forward artificial neural network. In the ndura
network, microenvironmental variables such as lapalgen concentration, glucose concentration and
extracellular matrix (ECM) gradient were represdras the input layer, regulatory genes as the hidde
layer, and the response for cell phenotypes asotheut nodes. This way, a genotype-to-phenotype
mapping with the use of a neural network approaah established, in order to determine the actibns o
the cell based on its genotype, the microenvironmanwhich it resides, and their interactions.
Furthermore, the neural network is subject to nmrtat when the cells divide. This means that the
behavior of cancer cells can change from one géoerto the next, implying that the models have the
capability to capture the evolutionary dynamicstwhor growth. In(52), it was revealed that tumors
grown in low oxygen concentrations exhibited brastthmorphologies, and the oxygen concentration
influenced the evolutionary dynamics. A subsequexténsion of the model involving the effect of the
ECM and anaerobic metabolism was used to exammeitiergence of a glycolytic phenotype and the
influence of the tissue oxygen concentration andME@ensity on the dynamics of the mod@l3).
Simulation results showed that this glycolytic pbigpe was most likely to occur in low oxygen
concentrations and within a dense ECM. Moreoverw#s observed that, while a low oxygen
concentration results in branched tumor morpholagyeased ECM density gave rise to more compact
tumors with less fingering morphologkigure 4 shows a series of simulation results with this etod
More recently, these authors investigated the impédhe microenvironment on the emergence of a
motile invasive phenotype in an evolving tumor pagon using the same approat). The model

focused on haptotaxis, i.e., directed cell movenadoig ECM gradients in the tissue, which is knden

16
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be the dominant mechanisms in tumor invas(66). Results showed that in identical simulation
conditions, the tumor’s evolutionary dynamics cageeto a proliferating or migratory phenotype, whic
suggests that the introduction of cell motilityarthe model changes the shape of the fithness lapdsan

which the cancer cell population evolves.

Linking cell signaling to cell-cell and cell-matrix interactions: E-cadherin mediates cell-cell adhesion

and plays a critical role in the formation and namance of cell contact, and loss of E-cadheriniated
adhesion is a key feature of the EMT. Only recentncer modelers began to explore linking the
intracellular signaling dynamics-related cell-catlhesion and the extracellular consequences irsivera
tumors. A molecular-microscopic multiscale agergdshlattice-free model was first developed for this
purpose by taking into account the intracellulanayics of the E-cadherin afdcatenin interactions and
the physical forces on the ce{i6). The model focused on a simplifi@ecatenin pathway which captures
the key features of the cell adhesion process. I8tion results showed that down-regulatioretatenin
can be mainly driven by cell-cell contacts, and E®HANn be achieved and reversed depending on the
regulation of solublg3-catenin by local contacts. The intra- and intduta protein interactions that
govern cell—cell adhesion combined with cellulaysibal properties are also the driving forces of an
essential mechanism that a cancer cell uses tchatta the endothelial wall, i.e., transendothelial
migration (TEM)(57). Thus, with necessary extensions and modificatiortee previous model (e.g., the
addition of the Src pathway, which plays a printifgde in TEM), the same modeling group examined
the influence of different protein pathways in tehievement of TEM58). Four cancer cell genotypes
that differ in the adhesion protein pathways weyestdered. The genotypes were characterized by thei
capacity of creating N-cadherin-mediated bonds wightunica intima and by their capacity of indgcan

detachment of the endothelial-endothelial bondsStuy activity. Their results indicate that the slewe

17



Thomas S. Deisboeck et al.: Multiscale Cancer Madel

migration was found in the case when both N-cadh&nd Scr were knocked out, while the fastest case

occurred when both N-cadherin and Scr remainedecti

2.3.3. Microscopic — Macroscopic

Molecular-microscopic modeling has enjoyed gooccsss in predicting the local behavior of cancer on
scales of hundreds of microns to millimeters, and proved a valuable tool for investigating thedin
between our current wealth of experimental molecatal cellular biology data and complex, emergent
behavior of large multicellular systems. Howevhris approach is too computationally intense to ibeu
full tumors and their surrounding tissues. Furthenen some important aspects of tumor biology, agh
mechanical stresses, are best characterized byostagic, continuum model(d0-11) Hence, there is
need to dynamically combine microscopic models éscdbe important cell-scale phenomena (e.qg.,

EMT) with the efficiencies of continuum models.

Current microscopic-macroscopic models can be ryuglategorized (with increasing levels of
multiscalarity) as 1¥omposite hybrid models, where a microscopic model of one phenomenonugled
with a macroscopic model of another,c@htinuum models with functional parameters, where continuum
models express microscopic effects through hetermes, time-dependent parameters, anddaptive
hybrid models, where one or more phenomenon is represented hsthgnicroscopic and macroscopic
descriptions, with a physically-motivated meansadaptively choosing the appropriate characterinatio
We focus here on representative examples of tliese approaches; interested readers may also eonsid

recent review$10) and bookg11, 59)
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Composite hybrid models:To date, most hybrid microscopic-macroscopic metiele been composite,

where a discrete cell-scale representation of ¢trem@menon is combined with a continuum tissue-scale
model of another. Some of the most important examplave been coupled models of tumor growth
(using a continuum model) with angiogenesis (usirdjscrete model}60-65) Zheng et al(60) used a
sharp interface continuum model of tumor growthermehthe moving tumor boundary is modeled as the
boundary between two incompressible fluids, witlliscrete cellular automaton model of angiogenic
sprout tip motion first introduced by McDougall, &ain, and Anderso(66-70) In the viable rim of
the tumor region (where substrate—oxygen, glucaese, growth factors—Ilevels were higher than a
threshold value), the tumor volume increased wifitdiferation rate proportional to the substradeel.

In the necrotic core (where the substrate levélbiellow the threshold), volume was lost due to byalis

and subsequent fluid flux. Cell mechanics were ehexdiby introducing a mechanical presdatbat was
related to the local tissue velocityby Darcy’'s law ¢ = -uJP), and cell-cell adhesion was modeled as a
surface tension along the tumor boundary. The bayndf the necrotic region released angiogenesis-
promoting factors that diffused out of the tumaached the sprout tips, guided their chemotaxis and
branching behavior, and ultimately determined tascular topology. Simultaneously, the authorsesblv
for the local substrate concentration throughot tithmor and surrounding tissue using a quasi-static
reaction-diffusion equation. The models were furttmupled by releasing substrate from the
neovasculature and by restricting this nutrientre@whenever the tumor pressure exceeded a thdeshol
value. This model was able to reproduce tumor mumggical instability caused by substrate

heterogeneity, as well as biased tumor growth atbagieovasculatur&igure 5a).

More recently(64), Macklin et al. coupled a refined sharp interfacedel by Macklin and Lowengrub
(71-74) with a more advanced discrete model of angiogenes., dynamic adaptive tumour-induced

angiogenesis (DATIA), by McDougall, Chaplain, andd®rson(70). In the DATIA model, blood flow
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(including the effect of hematocrit) is solved thghout the vasculature as a coupled system of lHibése
flow equations in individual segments of the necutsture. The vessel segment radii vary according t
the balance of wall shear stresses, vessel fluedsore, and vessel elasticity—this, in turn, affect
transport throughout the vasculature. The refingthor model introduced a hypoxic region, where
substrate levels were too low to promote cell feodition but not so low as to induce necrosis. This
region, rather than the necrotic core, releasetbgrgesis-promoting factors that drove chemotaxibie
angiogenesis model. The proliferating rim releasedrix metalloproteinases (MMPs) that degraded the
ECM in and near the tumor; this, in turn, affectied development of the vasculature due to haptiaixi
the sprout tips, as well as the evolution of themdu by altering the distribution of the mechanical
pressure. As an advance over the work by Zheng @), oxygen was released by the neovasculature at
a rate proportional to the hematocrit level (to elookygen transport by red blood cells). Furthemmor
the vessel radius was determined by the balangessiel pressure, wall shear stress, vessel efgstiod

the mechanical tumor pressure, leading to tumaoseleollapse as an emergent phenomeRkau(e 5b).
This work was able to capture the complex dynaroic$) hypoxia-induced angiogenesis, 2) increased
oxygen supply by the vasculature following anastsisiof the vessels, 3) rapid subsequent tumor ¢growt
leading to increased proliferation-induced mechanpressure, followed by 4) new regions of hypoxia
due to vessel collapdé4). The results led the authors to hypothesize repelhypoxia-angiogenesis-
growth cycles due to the combined effects of tursbape instabilities, mechanical collapse of the
neovasculature, and heterogeneous oxygen distitsitiSimilar recent work by Cristini, Frieboes,
Lowengrub, Wise and co-workers combined a more @gé&neultiphase model of tumor growth with a
“free-swimming”, off-lattice angiogenesis modeldanbserved continued hypoxia and angiogen@dis

63, 65)
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Continuum models with functional parameters In this approach, a continuum model is endowé&d w

spatiotemporally-varying parameters that encapsataller-scale biophysics, effectively includihgge

as constitutive relations. Early notable examptetude nonlinear oxygen consumption and proliferati
terms in various tumor growth models. Ward and Kisgd nonlinear, Michaelis-Menten-type uptake and
proliferation terms to model the relationship betw@xygen availability, proliferation, and obseroas
that cell growth tends to saturate due to independmiting factors even when supplied unlimited
growth substrate&/5-76) Gatenby, Smallbone, and other colleagues maently included similar such
relationships between proliferation and substratyden and glucose) uptake, based upon the analfysis
molecular-scale metabolism modelir{@7-79) Macklin et al. recently observed Michaelis-Menten
population dynamics as amergent phenomenon from an ABM that varied the quiescent-to-prolifévat
phenotypic transition probability with oxygen, avalidated the result by comparing against breastexa

patient dataKigure 6) (80-81)

Based in part upon earlier parameter stud&® 73, 82-83) Macklin and co-workers formulated a
phenomenological relationship between the local E@MsityE and a tumor’'s mechanical response to
pressure gradients by varying the mobility coediitiin Darcy’s law ag = uo/(1 + bE), whereb is
constant(10, 61, 64) Thus, the tumor tissue’s mechanical respop3ed¢creases as the ECM density
increases, modeling 1) the increased mechanidataase of a denser ECM, and 2) the greater nuwtber
cell-ECM integrin bonds that must be broken for cebtion (73). This functional relationship can be
derived through a careful upscaling analysis (@g.in(10) and later expanded in (84)) of the adhesive,
repulsive, and frictional forces in mechanisticicBabased agent models (e.@9, 56, 58, 80, 8%)
Similar models have been used by Macklin et alnamlinear chemotaxis and haptotaxis coefficient
functions (10, 64) and other groups have used a nonlocal, integrah to model cell-scale adhesion

effects in continuum tumor invasion mod€B6-88) Indeed, such functional relationships between
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microenvironmental quantities and averaged celhphgoic behavior could be incorporated in functipna
spatiotemporally varying model parameters by amatynr numerically sampling appropriate molecular-

microscopic models.

This approach has been applied to multiscale chemapy modeling. Sinek, Frieboes, Cristini and co-
workers developed a cell-scale compartmental motiehemotherapeutic drug (doxorubicin) transport
within a cell's cytoplasm and nucleus, which thembined with a mechanistic model of DNA-drug
adduct formation, repair, and apoptg®8-91) Their model accounted for cell cycling effectsvayying

the probability of apoptosis with the substrateelexia a Hill-type function. This model, in turmformed

a spatiotemporally-varying apoptosis parameter icoatinuum model of tumor growth, which, when
combined with reaction-diffusion equations for dudte and drug transport, was very successful in
predicting 3D, whole-tumor response to doxorubmmiministered via the (neo)vasculature. As shown in
Figure 7, cell monolayer drug response data was used ioratd the model, and subsequently used to
predict 3D tumor response. As in our previous eXes)pthe functional parameters are informed by
upscaling mechanistic microscale models. Indeed, Hill-type substrate dependence (which was
imposeda priori in (89-91) can be predicted as the emergent behavior of M Af Macklin et al (see

Figure 6) (80-81, 85)

Adaptive _hybrid models. In the fullest realization of the “multiple hiechies” paradigm discussed

earlier, discrete and continuum representationthefsame phenomenon are applied dynamically and
simultaneously, along with a biophysical rule t@gpriately select the correct representation thhowt
the spatiotemporal modeling domain. This fully hgtapproach is a ongoing, cutting-edge topic in the

scientific computing community; until recently, shapproach has largely been computationally infidasi
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and only recently have tools begun to emerge thatenforce mathematical and biophysical consistency

between such simultaneous representatibf}

In recent work, Kim, Stolarska, and Othmer coupdedliscoelastic model of a tumor’s quiescent and
necrotic regions with an ABM of tumor cells in tbater proliferative rim (of thickness ~100-20),
allowing for more detailed treatment of moleculad @ellular biology within the viable rim while mialg

use of the computational efficiency of a continunmodel for the majority of the millimeter-sized tumo
(Figure 8a) (92-93) The discrete cellular model, which updated eaxierk by Dallon and Othmer to
include apoptosis and proliferati¢®4), described the cells as deformable, viscoeladitpseids subject

to adhesive, repulsive, and drag forces, as welirasth-induced stresses. The model included didare
transfer of forces from the discrete cells onto ttemtinuum model in the quiescent region by
interpolation of the discrete cells’ forces ont@ thearest nodes of a triangular mesh; mass could be
transferred between the discrete and continuum maae cells changed between the quiescent and
proliferative states using a least-squares prajecéilgorithm. This work is characteristic of oneima
approach to hybrid modeling, where the discrete eodtinuum representations are applied in pre-

specified regions.

More recently, Wise, Lowengrub, Cristini and cofjaas combined a 3-D multiphase continuum model
(where each “voxel” of tissue is modeled as a miif fluid, ECM, and various cell populations, aand
Cahn-Hilliard type equation to regulates the meatgaaf the mixture) with a lattice-free, discretedel

of migrating tumor cell§10, 62-63, 65) As in previous hybrid models, the discrete andtiooium
representations exchange forces with one anotherarAadvance over earlier hybrid modeling, their
approach could dynamically convert between the reisc and continuum representations while

conserving mass and momentum, using criteria ss@eldensity and hypoxia to trigger the conversio
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Mutation dynamics were modeled as transfers betwkenmultiphase mixture cell components. The
group investigated the epithelial-mesenchymal ttemsin hypoxic glioma (brain tumor) cells, and
observed such behavior as single-file like stramidmotile, palisading cells moving from the hypoxic
regions towards high-oxygen environments—an efbbserved in clinical histopathologkigure 8b-c).

The model was also able to treat the formation aitlbte tumors in regions where discrete cells

aggregated sufficiently to satisfy the continuunpdthesis (e.g., in normoxic regiongjdure 8d).

3. CONCLUSIONS: CHALLENGES AND FUTURE DIRECTIONS

We outlined the different ways that recent modiels lower-scale modules with those at higher-sdale,
the interest of developing more realistic and prtdet models of cancer. We emphasize the viewpoint
that mathematical and computational cancer modelether scale-specific or multiscale, are most
efficient when they are as complex as necessatygsysimple as possib{85). The integration of an ever
growing body of experimental and clinical data wdkmand even broader ranges of expertise and
knowledge thus will require the formation of craliseiplinary and multi-institutional groups focugion
particular fine-grained building blocks or functadmoduleg96). In the following, we discuss several of

these daunting challenges and conclude with fudireetions of multiscale cancer modeling.

3.1. Parameter estimation

It is widely accepted that the more quantitativpeskmental data are available to build and constiaé
parameter values, the more likely models are tarately describe observed behavi(8%). Parameters
of scale-specific cancer models are already ditfite quantify, not to mention those for multiscale

cancer models for which parameters have to be et different scales. Not all of these parametsrs
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experimentally available or even measurable wittieru techniques hence some have to be estimated by
comparing model results to experiments. There \moedlasses of parameter estimation techniques that
are frequently used in systems biology: local omation (e.g., direct-search, and gradient-based
methods) and global optimization (e.g., simulatethealing, branch and bound, and evolutionary
algorithm). Each method has its advantages andvhsdages, and interested readers should re{@8to

100)for a comprehensive survey of parameter estimatietnods.

Due to the complexity of cancer models and theityuaf the data, over-fitting is a common problem i
parameter estimatiofi01) When a model has many estimated parameters arabtresponding data are
insufficient, over-fitting can lead to some unwated conclusions. To narrow the range of the par@me
space, constraint-based modeling, which involvesnalti-step procedure and accounts for both
quantitative and qualitative data at the same tim&y be an alternative choi¢®02). However, cancer
modelers should be aware that, given the curredenying difficulty in estimating parameter values,
many models may remain limited in the mechanistsight they provide and in their capability to potd
system dynamics in unforeseen conditions. To caimsthese models and thereby improve predictive
power, modelers must integrate insights from nucaéparameter studies, direct experimental data fro
collaborators, and any information that can be rgdedafrom the experimental and theoretical biology
literature (which itself may require reinterpretatiwith a mathematical point of vieg1). The hybrid
modeling approach may also be useful for integgapiatient data across a variety of spatial scalbsre
calibration to each datum occurs at the appropsesde, and the information is subsequently alloteed

propagate throughout the multiscale framewdrk, 81)

3.2. Computational demand
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Significant efforts have been made to seek matheataapproaches and computational resources that
will enable cancer models to be run in a reasonpdted of time(103). It is generally accepted that if a
model works on higher spatial and temporal resofytit will need higher compute power and thus &ng
run time to accomplish computing tasks. Discretaligscrete-based hybrid models are more seriously
affected by the compute intensity constraints bsedhey are generally too detailed to simulate aver
long period of time, particularly in large, 3D doima One solution is to take advantage of very pavie
massively parallel supercomputers and develop nigalealgorithms that can run on these machines.
However, doing so may not resolve all the diffimdtin handling the enormous amount of experimental

and clinical data; it is also not practical in manwyrent clinical settings thus would have limiteshge.

As discussed, adaptive hybrid modeling has thenpialeto save computational time while maintaining
the predictive power of the model (s8ection 2.2. Other methods for solving the compute intensity
issue are also available, but are all at an exmetiah stage. For instance, the equation-free approa
developed by Kevrekidis and co-worké¢i®4-106)leverages the spatiotemporal scale separatioliote a
for significant gains in computational efficiency blternating short bursts of appropriately ini#at
microscopic simulations with accelerated result cpssing at the macroscopic, continuum scale.
Furthermore, methods from other modeling commusiitseich as the Heterogeneous Multiscale Method
(HMM, e.g., (107-108), can provide useful insight into efficient nunoali methods that may be
incorporated into the development of multiscalecearmodels as well. By drawing on the strengths of
these potentially very useful methods and integgathem into the next generation of multiscale eanc
modeling, we may be able to produce more comprélerend computationally efficient models to

simulate tumor progression and predict treatmepaith

3.3. Data sharing and model reusability
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Data sharing is an active topic in the field ofteyss biology(95). We also advocate that, in order to
avoid duplication of effort and thus waste of reseg, achievements of publicly funded work inclgdin

data and models should be made accessible to thengnity in a form where others can review and
reproduce the modeling results, and then reuseramde these resources in future works. In the

following, we focus on two aspects of data shaand model reuse.

First, the data and models should be presentsthmndlardized formats with clearly stated dependencies
and problems. This will improve the reusabilityrobdels and clarify their limitations. In systemslbgy

at large, there have been a few standards ested/isich as SBML for biochemical pathways, CellML
for biophysical models, and FieldML for spatiallfie (109) These standards define how models are
structured, how the mathematical equations aredswoand how units are defined. Establishing these
standards has been a significant step towards\acgia robust foundation for the modeling community
such standardization efforts, including amendingstexg or creating new ontologies, can facilitate

translation of multiscale models into and evenagaption of these in silico tools in clinics.

Second, to store and exchange modeling tools,gheet modeling community needgjital repositories

of models provided by researchers from academigmenental and corporate laboratories. Web services
are needed to connect and integrate these curreftdyr incompatible models and tools for data
acquisition, storage, analysis and presentaticorder to bridge the integration gé8). In brief, cancer
modelers need to efficiently share data, inforrmaiad knowledge across geographic and organizétiona
boundaries within the context of distributed, mdiSciplinary and multi-organizational collaboragiv

teams, while at the same time effectively protertata ownership and data security.
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Many web-based systems biology communities or @sed have been created over the past years, and
some of them are developed based on semantic tegyn(see(110) for a review). Among them, the
Center for the Development of a Virtual Tumor (CY{I11)is building an ever-growing community of
researchers around the world dedicated to canceelng. It currently provides cancer researchers a
community-driven web platform with functions inclad wikis, blogs, forums, member profiles, and
RSS-based news updatékl?) It also develops NIH/NCI-caBIG® compliant infrastture tools to
facilitate interaction among its contributing sdists. Members of CVIiT come together online on a
regular basis to discuss cutting-edge literatur€Wnr’'s online forums which separates CViT from eth
model repositories such as BioModg143) Additionally, the social networking aspect of gite allows
research teams to collaborate from anywhere arthend/orld in a workflow designed specifically foret
cancer modeling community. Recently, CVIiT releadbd Digital Model Repository (DMR), an
innovative web platform for the exchange of canoedels(114) Cancer investigators can upload their
models, experimental data, and simulation results @ublish them to other DMR users of their choice
who will then be able to access those files. TheRDalso implements an innovative elicensing workflow
and is built using semantic web technologies thinotlte Resource Description Framework (RDF; a
standard metadata model for describing the relstipnbetween two objec{415)). The newest feature
of the DMR is the Computational Model Execution reeavork (CMEF). Its aim is to allow executable
files to be uploaded as part of a model. The ovafiehe model can indicate variable parameters which
can be defined for each run, and specify detailshef model, including programming language and
runtime computing environment. Others can eithewrdoad the model and run it on their own
computers, or simply execute the model using comguiesources provided by the DMR. Altogether,
CVIT and its semantic services help to advanceddecer modeling field in facilitating web-based

multidisciplinary cancer research.
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3.4. Personalized medicine

Approaches provided by systems biology are begmtorimpact medicin€l16). In treating cancers, the
integration of computational and experimental téghe@s may improve our abilities to design more
efficient cancer therapies. Corresponding appbecetinclude biomarker validation, development ofeno
accurate diagnostic tests, and targeted drug disgov all geared towards the optimization of

individualized cancer therapy.

The conventional population-based approach foafheutic developments in clinics still relies oreaes

of randomized clinical trials aimed at searching favorable yet averaged treatment outcofh&7)
However, patient responses to a particular dru¢herapy are known to fall into a more or less wide
range that deviates from this averaged behavioitiddale cancer modeling may eventually help to
explain not only why some therapies fail while oth@rove to be effective in controlling tumor
progression, but also why a particular treatmentke@nly in a fraction of patients. Models will Feato
incorporate patient-specific experimental and chhdata at all biological levels, including, egenomic,
proteomic, anatomical, physiological, and pathatabgdata. Training the model on a patient’s dath wi
yield a more accurate description of the specifitetics of disease progression. Hence, this approac
should provide a higher predictive power than #ddtieved with pooled data only and thus shoulddbe a
to guide personalized treatment strategies morerraty to improve outcoméll7) Moreover,
multiscale cancer models can be used to help desize a patient’s specific biomarkers (rangingriro
critical pathway proteins to phenotypic profileslamaging patterns) and then compare these ‘croas-s
signatures’ with pooled data from conventional ickh practice or from a trial with the candidateigir
being applied, in an effort to simulate the speadiésponse of the patient. Introducing multiscaecer

modeling to medicine has the potential to fac#itédhe breakthrough of personalized medicine, and
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eventually maximize advances in science and teolgyolor the benefit of cancer patients by helping

select or optimize preventative and therapeutiepatare.

In summary, multiscale cancer modeling is a mostsing, innovative research area that constitates
critical driver for the field of integrative canceystems biology. Challenges to the success of this
approach arise as a result of our still limitedenstanding of the complex, dynamic nature of cas)dée
often constrained access to appropriate experitmantaclinical data, the difficulties in validatimgodels
against these data, and the challenges involvedrimimunicating and sharing modeling methods amongst
the field’s multiple stakeholders. However, by diagvon the collaborative effort and expertise of
scientists from different disciplines and the coning development of advanced, innovative
computational and mathematical methods, we belileaemultiscale cancer modeling will reach its full
potential in guiding targeted experimental reseanctenabling patient-specific predictions and thus

accelerating personalized medicine.
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medicine

ABSTRACT:

Simulating cancer behavior across multiple biolafiscales in space and time, i.e., multiscale aance
modeling, is increasingly being recognized as agyw tool to refine hypotheses, focus experiments,
and enable more accurate predictions. A growingberrmof examples illustrate the value of this apphoa
in providing quantitative insight on the initiatioprogression, and treatment of cancer. In thislartwe
introduce the most recent and important multiscad@cer modeling works that have successfully
established a mechanistic link between differentldgical scales. Biophysical, biochemical, and
biomechanical factors are considered in these moltl¢d also discuss innovative, cutting-edge modelin
methods that are moving predictive multiscale canoadeling towards clinical application. Furthermor
because the development of multiscale cancer maeelsires a new level of collaboration between
scientists from a variety of fields such as biologyedicine, physics, mathematics, engineering, and

computer science, an innovative web-based infreistre is needed to support this growing community.

Acronyms list: ABM: agent-based modeling or agent-based model
CViIT: Center for the Development of a Virtual Tumor
DATIA: dynamic adaptive tumour-induced angiogenesis
DCIS: ductal carcinoma in situ (of the breast)
ECM: extracellular matrix
EGFR: epidermal growth factor receptor

EMT: epithelial-mesenchymal transition
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MD: molecular dynamics

MMP: matrix metalloproteinase
ODEs: ordinary differential equations
PDEs: partial differential equations
PLCy: phospholipase €€

RTK: receptor tyrosine kinase
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FIGURE LEGENDS

Figure 1: Schematic illustration of the biological scalessignificant relevance for cancer modeling
including atomic, molecular, microscopic (tissuelticgllular), and macroscopic (organ) scales. Défe
scales represent different spatial and temporajesinthe methods for modeling these distinct scales

differ as well. Multiscale cancer modeling requities establishment of a linkage between thesescale

Figure 2: Mechanistically linking EGFR point-mutations tdeskd signaling characteristics leading to
the onset of oncogenic transformatiofe). Branched signaling model of th&bB1, i.e., through two
parallel phosphorylation pathways, correspondingytosine 1068 (Y1068) and tyrosine 1173 (Y1173).
(b) Calculated ERK and Akt phosphorylation levels initsi of nM under serum starved (EGF-) and serum
cultured (EGF+) conditions for cells with normabBil (EGFR) expression and ErbB1 over expression.
In each panel the Y1173-ErbB1 affinity (Kis varied along the x-axis (log value relativevtibd-type)

and the Y1068-ErbB1 affinity ({0 is varied along the y-axis. The blue circle desdhe wild-type, the
green denotes the L834R mutant and the yellow tbelL323-S728 ins S (or Del) mutant cell lines.

Reproduced with permission frof81).

Figure 3: (a) Experimentally-supported molecularly-driven cedlulphenotypic decision algorithm.
Decisions are made dependent on the molecular dgaashPLG and ERK, two downstream signaling
molecules of EGFR, for options (2)-(4). Beginninghna quiescent cancer cell, its phenotype fomtévet
step is determined as follows: (1) cell deathhé& bn-site glucose level is insufficient; dependamthe
molecular dynamics of PyCand ERK, (2) the cell will remain quiescent if trege of change of both
PLCy and ERK remain below their corresponding threstiod) the cell will proliferate (and a new cell

will then occupy an adjacent free location) if otig rate of change of ERK exceeds its threshdild) (
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the cell will migrate to the adjacent free locattbat has the greatest chemotactic cue weigheifake of
change of PL (regardless of ERK) exceeds its thresh@l.The effects of asynchronous combinatorial
change in EGF and T@Fconcentrations on tumor volume represented byreetber (left panel) and
tumor expansion rate represented by the inverselaiion step (right panel). In the tumor volume
evaluation, the largest tumor volume is reacheceundnditions of high TGFand low or standard (with

a variation of 1.0-fold) EGF concentrations. Howeve the tumor expansion rate evaluation, the most
aggressive tumor expansion rate (fewest simulasteps) occurs under conditions of high EGF,

regardless of TGFconcentrations. Adapted with permission fr8).

Figure 4: Background oxygen concentration and matrix denisityence the growth rate and tumor
morphology. Oxygen concentration level is represgrby co and matrix density b¥. Low oxygen
concentration gives rise to branched tumor morghglevhile the matrix density tends to stabilize the
morphology, giving rise to wider branches in a mdemse matrix. Proliferating cells are shown as red
quiescent cells as green, necrotic cells as yelttead cells as blue; empty grid points are displdye

white. Adapted with permission fro(B3).

Figure 5: Early microscopic-macroscopic composite modeltuafor-induced angiogenesis and growth
response(a) A continuum tumor model (dark curve in top plat)doupled with a discrete angiogenesis
model (thin curves in top plot), which releases gety (bottom plot) that fuels tumor growth, shape
instabilities such as fragmentation, and co-optbrthe vasculature. Reproduced with permission from
(60). (b) A continuum tumor model (top left: red = proliféve rim, blue = hypoxic region, brown =

necrotic core) is coupled with an advanced discestgiogenesis model (top left: brown transparent
curves), whose topology is determined by sprow tipp left: green points) that respond chemotaltyic

to growth factors released by the blue hypoxic amgiand haptotatically to the ECM density. The
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proliferating tumor generates mechanical pressb@tdm left) that can collapse vessels, thereby
obstructing hematocrit transport (bottom right) asubsequently oxygen transport delivery (top right)
This, in turn, feeds back into the tumor growthtgat, the distribution of oxygen and thereby thatisp

distribution of angiogenesis-promoting factors, amwhsequently the neovascular network topology.

Reproduced with permission frof@4).

Figure 6: Macroscopic-scale functional relationships as ee@rghenomena from microscopic models.
The volume-averaged behavior of an agent-based Inodd#uctal carcinal in situ (DCIS)—a type of
breast cancer where growth is constrained to asbrdact—was analyzed to postulate a Michaelis-
Menten type relationship between oxygei &nd proliferation (PIl) as aemergent phenomenon of the
model (80)—see the solid curves above. This hypothesizediogakhip was later validated by analyzing
post-mastectomy Ki-67 immunohistochemical datapialiferation in two separate breast ducts (dashed

curves), with excellent qualitative and quantitatagreemen(i8l).

Figure 7: Calibrated macroscopic behavior as mechanistic timmal relationships. Sinek, Frieboes,
Cristini and co-workerg89-91) used a mechanistic, compartmental cell-scale mudaletermine a
calibrated relationship between the local substlatel, doxorubicin level, and the spatiotemporally
varying tumor apoptotic response to chemotheragterAcalibrating to experimental monolayer data
(dark gray bars), the same tumor types were siedlat 3D, with the model accurately predicting the
tumor’'s heterogeneous apoptotic response (lighy dpars) to the large substrate and doxorubicin
substrates within the tumor. This work not only destrates the capacity for a calibrated multiscale
model to provide better predictions of 3D tumor d&ebr than monolayer experiments alone, but also
shows how analysis and simulation of microscopiadet® can motivate improve constitutive laws in

continuum models that properly incorporate micrpgceffects. Reproduced with permission fr(@i).
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Figure 8: Hybrid microscopic-macroscopic modeling@) Kim, Stolarska and Othmé®2-93) coupled a
discrete model of proliferating cells (red circleajh a viscoelastic continuum model of the neacbre
(cyan solid), by coupling the triangular computatibmesh through the quiescent region (blue linEs.
model could successfully transfer forces and mabstseen the two representations. Reproduced by
permission from(92). (b-d) Wise, Lowengrub, Cristini, Frieboes and colleag(ig€s 62-63, 65used a
discrete model of motile glioma cells (blue dots(ly and (c)) to model the EMT in glioma, and a
continuum mixture model (gray regions(in) and(d)) to model regions of tumor cell aggregation. The
model was successful in dynamically choosing betwagiscrete and continuum representation according
to localized biophysical criteria (in this casetheeshold density, coupled with hypoxic considenasi,
while maintaining mathematical consistency betwten models and conserving mass and momentum
during any switch. Palisading cells were obserngedchbve up oxygen gradients (blue dots; &3¢ and
once cells aggregated in normoxic regions in sffic numbers, they were converted back to the
continuum representation, thus creating a satelliteor (outer gray regions ifd)). Adapted with

permission fron(63, 65)
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FIGURE 6.
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FIGURE 7.
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FIGURE 8.
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