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1. INTRODUCTION 

 

Cancer is a class of diseases characterized by out-of-control cell growth and tissue invasion. Because 

cancer initiation seems to depend on a series of genetic mutations affecting intrinsic cellular programs, to 

date, the vast majority of cancer research has focused on the identification and characterization of these 

genetic and molecular properties of cancer cells themselves (1). However, tumors are also heterogeneous 

cellular entities whose growth is dependent upon dynamical interactions among the cancer cells 

themselves, and between cells and the constantly changing microenvironment (2). For example, such 

interactions include signaling through cell adhesion molecules such as cadherins and integrins (3) and 

differential cell responses to growth factors and other external signals (4). All of these interactive 

processes act together to control cell phenotypic behaviors such as proliferation, apoptosis, and migration. 

There is increasing consensus that these dynamic interactions cannot be investigated purely by using 

biological experiments, since experimental complexity usually restricts the accessible spatial and 

temporal scales of observations. Consequently, as of late, there is a transition within the cancer research 

community to treat and study cancer as a systems disease.  

 

Cancer systems biology is a newly emerging field that uses an interdisciplinary approach to provide the 

systemic understanding of cancer initiation and progression by investigating how individual components 

interact to give rise to the function and behavior of the cancerous system as a whole (5). It seeks to 

decipher emergent behavior rather than to focus only on the system’s constituents’ properties. In addition 

to conventional biological and medical experiments, a systems approach often involves mathematical and 

computational modeling to interpret and integrate the massive amount of data that experimentalists are 

currently uncovering, especially in molecular and cell biology (6). In silico cancer models are necessarily 

simplified, yet we argue can provide adequate representations of a particular cancer phenomenon to be 
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investigated. In fact, such a theoretical approach has been increasingly recognized as having the capability 

1) to simulate experimental procedures and to optimize and predict clinical therapies and outcome, and 2) 

to test and refine medical hypotheses (7). The development of a successful in silico cancer model is a 

long-term process, expected to be iteratively conducted, with available experimental data used to guide 

the model design, and to verify and validate model results. 

 

Most current computational cancer models focus on cancer behaviors that occur at a single biological 

scale (7), and the decades of dedicated efforts by cancer modelers have made scale-specific models not 

only possible, but advanced enough to be practical for applications in oncology (8). However, because 

cancer growth and invasion indeed span multiple scales, using a scale-specific model is insufficient to 

uncover cross-scale mechanisms let alone to render predictions about the clinical outcome of the disease 

system as a whole (9). Modeling cancer across different biological scales has recently begun to play a 

more important role in moving the field of cancer systems biology towards clinical implementation. In the 

context of biology and physiology at large, a model is considered to be “multiscale” if it spans two or 

more different spatial scales and/or includes processes that occur at two or more temporal scales. Because 

a multiscale cancer model has to quantify parameters on, and relationships between biological processes 

that occur at different scales, the complexity of model development is significantly increased.  

 

In this review, we present representative works that have investigated key questions on cancer progression, 

invasion, angiogenesis and metastasis using a multiscale modeling approach. Systems approaches 

emphasize the integration and coordination between computational modeling and experimental efforts. 

Hence, attention will be given to the evaluation of the models’ capacity to account for in vitro, in vivo, or 

clinical data, and more importantly, an analysis of how the computational findings drive new hypotheses 

for further experimental investigation.  
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2. MULTISCALE CANCER MODELING 

 

Multiscale cancer modelers already have a wealth of useful, mostly scale-specific resources to refer to or 

base their innovative work on, but they also face the enormous challenge of developing more realistic and 

more accurate predictive models. The fundamental reason is that, when considering the increasing number 

of components at multiple scales (whether in time or space), more model parameters and the relationships 

between them will have to be defined, quantified, and frequently adjusted according to data from the 

literature, from experiments or clinics. Additionally, defining the linkage between different scales poses a 

significant barrier to model development; in many cases, the link is bidirectional, meaning that higher- 

and lower-level variables, parameters, and functions characterizing the model are influenced by each 

other. Furthermore, it has proven challenging to adaptively interface discrete (individual-based) and 

continuum (population-based) models while 1) ensuring mathematical consistency between the models, 

and 2) adequately conserving mass and momentum when switching between the models; indeed, these are 

continuing challenges in cutting-edge scientific computing (10-11). Generally, when developing a 

multiscale cancer model, particularly if with a clinical application in mind, it is imperative to maximize 

the accuracy and predictive power of the model while at the same time constraining the size of the model 

as much as possible in order to produce tractable results within a reasonable time frame.  

 

2.1. Concept: Integration of multiple hierarchies (in space and time) 

 

Various definitions of biological scales have been created in different life sciences fields (see (12) for an 

excellent review). We focus our discussion of multiscale on four main biological spatial scales: atomic, 

molecular, microscopic, and macroscopic (Figure 1). While each of these spatial scales may have 

multiple temporal scales, biological processes that take place at a lower-scale generally happen much 
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faster than those at a higher-scale, i.e., spatial and temporal scales tend to vary together, with slower to 

faster at the temporal scale corresponding to smaller to larger at the spatial scale. In the following, we 

briefly explain what processes occur at each of these four spatial scales and the main methods employed 

to simulate these processes, all from the cancer modeling perspective and practice. We note here that, as 

also commented in (12), model design and development should take into account the nature of the system 

being modeled rather than simply follow an invariable hierarchical structure. That is, depending on 

modeling purpose, it is no violation to merge two of the levels discussed here or to split one or more of 

them into distinct sub-levels.  

 

Atomic scale: This scale is used to study the structure and dynamic properties of proteins, peptides, and 

lipids, as well as their dependence on the features of the environment or on ligand binding (13). The most 

common modeling method used at this scale is molecular dynamics (MD) simulation, where atoms and 

molecules are allowed to interact for a period of time. Atomic-scale models deal with length scales in the 

order of nm and time scales of ns.  

 

Molecular scale: Models at this scale do not represent the molecular dynamics of individual proteins, but 

represent an average of the properties of a population of proteins. Cell signaling mechanisms, the natural 

regulators of biological systems, are usually investigated at this scale (14). Analysis of this scale 

constitutes an intensely active field of biomedical research and has the potential to provide new 

therapeutic targets to combat disease. Signal transduction starts with the binding of extracellular 

molecules (ligands) to cell-surface receptors, and ends with a change in cell function. Most of the current 

modeling efforts focus on this scale, adding insights into quantifying signal-response relationships and 

signaling events that control cellular responses (15). Ordinary differential equations (ODEs) are often 
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used to represent biochemical reactions contained in a signaling pathway. Molecular-scale models deal 

with length scales in the order of nm~µm and time scales of µs~s.  

 

Microscopic scale: This scale is also referred to as the tissue or multicellular scale, and in our definition, 

it also includes the cellular scale (i.e., single cell behaviors and properties). Individual cells are contained 

in a selectively permeable cell membrane (16). Models at this scale must suitably describe the malignant 

transformation of normal cells, associated alterations of cell–cell and cell-matrix interactions, the 

heterogeneous tumor environment and the element of tumor heterogeneity. These models usually use 

partial differential equations (PDEs) or agent-based modeling (ABM) rather than ODEs to simulate these 

factors and processes. The simulation run time can increase substantially if individual cell behaviors are 

investigated in fine detail. Tissue-scale models deal with length scales in the order of µm~mm and time 

scales of min~hour.  

 

Macroscopic scale: Models at this scale focus on the dynamics of the gross tumor behavior including 

morphology, shape, extent of vascularization, and invasion, under different environmental conditions (17). 

Microscopic details of tissue structure are averaged over short spatial scales to produce a description of 

the macroscopic-level tissue properties. At this scale, because the number of cells in the model is 

sufficiently large, it becomes possible and sometimes necessary to treat some or all of the cells as a single 

continuum. This in turn allows for cell and substrate transport to be modeled with conservation laws for 

spatiotemporally-varying densities (i.e., PDEs), rather than keeping track of individual cell activities. 

Models generally consider cell responses to gradient fields of diverse origins, such as concentration 

gradients of diffusible or non-diffusible molecules as well as strain and stress gradients generated by the 

growing tumor mass. Macroscopic-scale models deal with length scales on the order of mm~cm and time 

scales of day~year.  
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Since lower-level processes are much faster, it is reasonable to assume that they are in quasi-equilibrium 

with the slower, higher-level processes, i.e., lower-level processes can be included at the higher level via 

e.g. constitutive equations or force fields (18). For example, if a reaction occurs on a very fast time scale, 

then we can assume that the chemicals in that reaction are in equilibrium. This assumption eliminates one 

of the differential equations from the integrated system, making its solution more straightforward and less 

computationally intensive, while still maintaining the accuracy of the model. This type of multiscale 

modeling, where lower-level processes (small spatial scales, fast dynamics) are coupled to higher-level 

processes (large spatial scales, slow dynamics), has received the most attention in the current quantitative 

cancer research field, and is particularly useful when developing multiscale models because the system of 

governing equations is generally large. 

 

2.2. Modeling Techniques: discrete, continuum, hybrid [Summary box] 

 

Modeling cancer behaviors can involve techniques that are discrete, continuum, or hybrid, i.e. the 

integration of both [see Summary box]. Continuum models are capable of capturing larger-scale 

volumetric tumor growth dynamics (which are also accessible to conventional clinical imaging 

modalities) at a comparatively lesser computational cost (19). Continuum descriptions of tumor growth 

are also to some degree supported by fundamental physical principles, and thus benefit from the 

knowledge gained in this field (20). Despite these advantages, the averaging over space realized in 

continuum formalisms often cannot fully account for the diversity of cellular and sub-cellular dynamical 

features as well as genetic or epigenetic regulatory mechanisms exhibited at the individual cell level. In 

other words, a continuum technique is often a lesser choice when exploring tumor heterogeneity when the 

cell properties vary over small spatiotemporal scales, which is an inherent feature of cancer cells (21). 
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Moreover, continuum models cannot easily describe processes where individual cell effects are important 

or dominate, such as the epithelial–mesenchymal transition (EMT) process (22). Alternatively, discrete 

models are suitable to address these shortcomings, since they operate at the scale of individual cells or 

cell clusters. Discrete models can easily incorporate biological rules (based on biomedical data or data-

driven assumptions), such as those defining cell-cell and cell-matrix interactions involved in both 

chemotaxis and haptotaxis. However, discrete techniques also have drawbacks. The most serious one is 

the large computational demand when modeling each cell in fine detail, which limits the model to a 

relatively small number of cells. As a result, a typical discrete model is usually designed with a sub-

millimeter or lower domain size (23). Furthermore, some effects (e.g., tissue biomechanics) are best 

described at the macroscopic scale with continuum techniques (11).  For these reasons, cancer modelers 

are increasingly turning to hybrid techniques that combine the benefits of both continuum and discrete 

descriptions. In fact, in current discrete-based cancer models, extracellular factors are often modeled as 

continuous quantities, thereby rendering the models hybrid in nature (9, 23). 

 

[Summary Box - START] 

Discrete modeling can explicitly represent individual cells in space and time, and track and update their 

internal states according to a pre-defined set of biological and biophysical rules. This approach is 

particularly useful for studying carcinogenesis, genetic instability, natural selection and cell-cell and cell-

matrix interaction mechanisms. The dynamics of discrete cancer cells can be investigated with lattice-

based or lattice-free methods, where the former builds a grid with a finite number of dimensions in which 

cells live, while the latter describes cell actions in arbitrary locations and their interactions in arbitrary 

directions. Because discrete modeling is based on a series of rules applied to each cell, it is possible to 

translate detailed biological findings into rules for the model (24). However, the computational demand 
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increases rapidly with the number of cells modeled, limiting these models in the spatial and temporal 

scales they can represent.  

 

Continuum modeling describes tumor tissue as a continuum medium rather than working at the resolution 

of individual cells, and thus is a good choice for modeling larger-scale systems. This approach draws 

upon principles from continuum mechanics to describe model variables as continuous fields mostly by 

means of partial differential or integro-differential equations. Common continuum model variables (e.g., 

cell volume fractions, density, and cell substrate concentrations, e.g. nutrient, oxygen, and growth factors) 

are somewhat easier to obtain, analyze, and control, compared with those in the discrete case (25). 

Although these models can characterize global properties of gross tumor growth and invasion at the tissue 

or higher-scales, they cannot be used to examine individual cell dynamics and discrete events, such as 

EMT, since in a process that small, changes to a cell or a set of cells can move a nonlinear cancer system 

to a different state (26). This may be important when studying the effects of genetic, cellular, and 

microenvironment characteristics on overall tumor behavior. 

 

Hybrid modeling attempts to integrate and draw on the strengths of both continuum and discrete 

descriptions. Different definitions on hybrid modeling exist in the filed (9-10, 23), but in this article, 

hybrid models are roughly divided into two categories: composite and adaptive hybrid modeling. In 

composite hybrid models, individual cells are treated discretely but interact with other chemical and 

mechanical continuum fields. Under appropriate formalisms, such models are able to couple different 

scales impacted by the growth process with biophysical, biochemical, and biomechanical information 

passed between scales. In adaptive hybrid models, both discrete and continuum representations of cells 

are chosen dynamically and adaptively where appropriate, e.g., discrete modeling for EMT and 

continuum modeling for the tumor bulk. Thus, the adaptive hybrid modeling can achieve discretely high 
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resolution wherever and whenever necessary, while at the same time reducing the compute intensity as 

much as possible to support scalability of the approach to clinically relevant levels. Together, although 

continuum and discrete approaches have each provided important insights into cancer-related processes 

occurring at particular spatial and temporal scales, the complexity of cancer and the interactions among 

the cells and their complex tumor environment call for a multiscale continuum-discrete (hybrid) approach 

(10). Hybrid models have the potential to couple biological phenomena from the molecular and cellular 

scales to the tumor scale. 

[Summary Box - END] 

 

2.3. Case Studies:  

 

Regardless of which techniques are used to develop a cancer model, all of them are abstractions of reality. 

All hypotheses on which the models are based will eventually prove to be incomplete in one way or 

another (27). However, models have the advantage of being quantitative and interactive rather than solely 

descriptive. Thus, modeling and experimentation in cancer research can and should work cooperatively, 

supplement, and promote each other. In the following, we highlight some of the most recent and 

representative multiscale modeling works that demonstrate the importance and necessity of this approach 

in current cancer research.  

 

2.3.1. Atomic – Molecular 

 

Epidermal growth factor receptor (EGFR) is frequently overexpressed and mutated in a variety of cancers, 

and as a result, small molecule tyrosine kinase inhibitors for EGFR are of significant interest as anti-

cancer drugs (28). It has been reported that cytosolic signaling proteins bind to different phospho-tyrosine 
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docking sites of EGFR, which may cause differential patterns of EGFR downstream signaling (29). 

Hence, quantifying the difference in wild-type and mutant EGFR signaling and accounting for differential 

signaling through different phospho-tyrosines docking sites of EGFR is useful in identifying the role and 

significance of drug sensitizing mutations of EGFR in cancers.  

 

Radhakrishnan and co-workers have been developing multiscale models across atomic and molecular 

scales to understand the mechanisms of how altered signaling induced by point-mutations in EGFR leads 

to the onset of oncogenic transformations. In models presented in (30-31), they mathematically 

implemented a wild-type and a mutant EGFR activation mechanism, which differ in that the wild-type 

receptor tyrosine kinase (RTK) initiates phosphorylation of C-terminal tail substrate tyrosines only as a 

dimer, whereas the mutants can initiate phosphorylation as a monomer and as a dimer. In order to 

translate these context-specific phospho-tyrosine mechanisms into differences in the downstream 

response, they introduced a branched signaling approach through EGFR. As shown in Figure 2, two 

parallel phosphorylation pathways are implemented, corresponding to tyrosine 1068 (Y1068) and tyrosine 

1173 (Y1173), where phosphorylated Y1068 (pY1068) binds only to Gab-1 and Grb2, while 

phosphorylated Y1173 (pY1173) binds only to Shc. Accordingly, phosphorylation events at the Y1068 

and Y1173 sites transduce signals through different signaling routes. This approach allows for 

transcribing the effects of somatic mutations (L834R and Del) in the EGFR to different downstream 

responses in phosphorylated ERK (ERK-p) and Akt (Akt-p) in the EGF-induced signaling pathway (31-

32). Using these models, the authors successfully predicted that the ratio of Akt-p/ERK-p increases in 

mutants compared to wild-type (33), and found that the perturbation of the phosphotyrosine kinetics of 

Y1068 and Y1173 through mutations is directly responsible for the differential signaling leading to 

preferential Akt activation. They also investigated the inhibitory effects of small molecule tyrosine kinase 

inhibitors on EGFR phosphorylation and downstream ERK and Akt activation. 
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Another major finding of their models is that the clinically identified mutations of EGFR kinase induce 

network fragility in the stabilizing interactions of the inactive kinase conformation. This in turn provides a 

persistent stimulus for kinase activation even in the absence of any growth factor. Moreover, parameters 

that drive network hypersensitivity through the enhancement of phosphorylated ERK and Akt levels show 

a striking correlation with observed mutations of specific proteins in oncogenic cell lines as well as the 

observed mechanisms of drug resistance to EGFR inhibition. Therefore, the authors suggested that 

cascading mechanisms of network hypersensitivity and fragility may enable molecular-level perturbations 

(clinical mutations) to induce oncogenic transformations and mechanisms of drug resistance (31-32). As a 

specific example, they described a possible mechanism for preferential Akt activation in non-small cell 

lung cancer (NSCLC) harboring EGFR activating mutations. This preferential Akt activation makes these 

mutant cell lines conducive to oncogenic addiction, and this pathway addiction mechanism also results in 

a remarkable sensitivity to EGFR kinase inhibition. These structural studies on kinase activation can be 

used to forecast the mutation landscape associated with other ErbB family members that may have not yet 

been reported (34).  

 

2.3.2. Molecular – Microscopic  

 

Cancer models across molecular and microscopic scales are important and necessary due to (at least) two 

characteristics of cancer. One is that cancer is widely viewed as a disease involving irreversible genomic 

changes affecting intrinsic cellular programs (1), and thus it is difficult for wet-lab cancer researchers to 

trust a cancer model which misses correlations of molecular-level alterations with cancer cell properties. 

The other is that cancer is a context-dependent disease (35): depending on different microenvironments, 

cancer cells and the emergent tumor exhibit different phenotypes and behaviors. Cancer models 
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introduced in this section are discrete-based models because they need to function on a single cell level, 

and most of them use ABM technique. ABM is of particular interest to cancer modelers because it helps 

to address the role of diversity in cell populations and also within each individual cell, which in turn 

enables us to explore how cancer growth and invasion patterns (due to cell proliferation and migration) 

emerge as a result of individual dynamics, including cell-cell and cell-environment interactions and 

intracellular signaling of individual cells. In the following, we introduce the development of some of the 

most recent molecular-microscopic cancer models.  

 

Signaling dynamics of individual cells influencing microscopic tumor outcome: Deisboeck and co-

workers have been working extensively on the development of molecular-microscopic ABMs to simulate 

tumor properties within both brain tumors and NSCLC. Their models aim to quantify the relationship 

between extracellular stimuli, intracellular signaling dynamics, and multicellular tumor growth and 

expansion. At the molecular level are signaling pathways induced by growth factors and mediated by 

growth factor receptors. Similar to general pathway analysis studies, the pathway models are implemented 

using ODEs. At the microscopic level is a biochemical microenvironment constructed to represent a 

virtual tissue in a two dimensional (2D) or three dimensional (3D) domain. Heterogeneous environments 

are attained by distributing external diffusive chemical cues (such as growth factors, glucose, and oxygen 

tension) throughout the microenvironment. Throughout the simulation, the concentrations of the chemical 

cues are continuously diffused and updated at a fixed rate based on PDEs. Each cell carries a self-

maintained signaling pathway or networked pathway combination, meaning that cells will differ in 

signaling profiles and thus will exhibit different phenotypic behaviors as the simulation progresses.  

 

A molecular-level module, i.e., an EGFR signaling pathway, was first incorporated into a 2D brain tumor 

model to study and describe how context-dependent single-cell activities potentially affect the dynamics 
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of the entire tumor system (36). In this model, an experimentally-supported molecularly-driven cellular 

phenotypic decision algorithm was established to link molecular changes to cell phenotype 

determinations. It is noteworthy that, for processing phenotype transitions, a series of subsequent 

modeling works all adopt this algorithm directly, or a variety of it. We briefly demonstrate how this 

algorithm determines the cell’s migration fate. Experimental studies have shown that the transient 

acceleration of accumulating phospholipase Cγ (PLCγ) levels leads to cell migration (37), and thus the 

rate of change of PLCγ can be used to determine the cellular migration decision. In this algorithm, the 

potential for any individual tumor cell to migrate was assessed by evaluating 

[ ] [ ]( ) ( ) /n n
M PLC d PLC dtγ γ= , where d(PLCγ)/dt is the change in concentration of PLCγ over time, t, 

for a cell with an ID, n; if Mn exceeds a pre-specified threshold, then the cell becomes eligible to migrate; 

otherwise it can proliferate or become quiescent (i.e. it neither proliferates nor migrates yet remains 

viable). Note that a cell additionally has to meet other microenvironmental requirements, such as 

sufficient local nutrient conditions and available adjacent space, in order to proliferate or migrate 

successfully. In a follow-up study (38), increasing the EGFR density per cell was found to lead to an 

acceleration of the entire tumor system’s spatiotemporal expansion dynamics in accordance with 

experimental data (39). To simulate brain tumor growth in a more realistic microenvironment, a 3D model 

was developed (40), where a simplified cell-cycle description based on (41) and a more complicated 

extracellular matrix representation were implemented. Simulation results indicated that over time, 

proliferative and migratory cell populations oscillate and have a direct effect on the entire spatiotemporal 

tumor expansion pattern. Using the 3D model (40), an element of genetic instability was added, to 

investigate how heterogeneity impacts brain tumor progression patterns (42). The extended model found 

that cell clones with higher EGFR density are comprised of a larger migratory fraction and smaller 

proliferative and quiescent fractions, a result that agrees well with reported experimental data (43).  
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EGFR signaling also plays a vital role in the pathogenesis and progression of NSCLC (44). Deisboeck, 

Wang and colleagues attempted to look into how the methods applied to modeling brain tumors could be 

applied to the case of NSCLC. They also explored the possibility of using a cross-scale approach to 

determine critical molecular parameters that have a significant impact on tumor outcome at the 

microscopic level (45). A multiscale NSCLC model was first developed, with a revised EGF-induced 

EGFR-mediated signaling pathway implemented at the molecular level and a 2D heterogeneous 

biochemical tumor growth environment implemented at the microscopic level (46). This model revised 

the previous cellular phenotypic decision algorithm used in the brain tumor models by adding another 

decision molecule, ERK, in determining the cell’s proliferation fate. This was also based on an 

experimental study which reported that the transient acceleration of accumulating ERK concentration 

levels triggers cell replication (47). Figure 3a demonstrates this essential algorithm. With this 2D NSCLC 

model, they found that a minimal increase in EGF concentration can temporarily abolish the proliferative 

phenotype in the cancer cell closest to the nutrient source. More recently, Wang et al. (48) presented a 3D 

model in which both EGF and transforming growth factor beta (TGFβ) as well as their interplay were 

taken into account. This model was used to investigate how the effects of individual and combined 

changes in EGF and TGFβ concentrations at the molecular level alter tumor growth dynamics on the 

multicellular level, i.e., tumor volume and expansion rate. As shown in Figure 3b, when EGF and TGFβ 

concentrations were jointly varied asynchronously, a particular region of tumor system stability, 

generated by unique pairs of EGF and TGFβ concentration variations, was discovered. The simulated 

tumor system became sensitive to external variations in EGF and/or TGFβ when they occurred outside 

this robust region. The expansion rate for the standard simulation (with all kinetic parameters set to their 

reference values) was 2.07 µm/hr, which is in very good agreement with both computational modeling 

(49) and experimental studies (50).  
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Tumor microenvironment and genotype-to-phenotype mapping: The importance of the tumor 

microenvironment is currently of great interest to both the biological and the modeling communities (51). 

To investigate the impact of the microenvironment on the tumor growth dynamics, a series of hybrid 

ABMs were developed by Gerlee and Anderson. Each cell in their models was equipped with a 

microenvironment response network modeled using a feed-forward artificial neural network. In the neural 

network, microenvironmental variables such as local oxygen concentration, glucose concentration and 

extracellular matrix (ECM) gradient were represented as the input layer, regulatory genes as the hidden 

layer, and the response for cell phenotypes as the output nodes. This way, a genotype-to-phenotype 

mapping with the use of a neural network approach was established, in order to determine the actions of 

the cell based on its genotype, the microenvironment in which it resides, and their interactions. 

Furthermore, the neural network is subject to mutations when the cells divide. This means that the 

behavior of cancer cells can change from one generation to the next, implying that the models have the 

capability to capture the evolutionary dynamics of tumor growth. In (52), it was revealed that tumors 

grown in low oxygen concentrations exhibited branched morphologies, and the oxygen concentration 

influenced the evolutionary dynamics. A subsequent extension of the model involving the effect of the 

ECM and anaerobic metabolism was used to examine the emergence of a glycolytic phenotype and the 

influence of the tissue oxygen concentration and ECM density on the dynamics of the model (53). 

Simulation results showed that this glycolytic phenotype was most likely to occur in low oxygen 

concentrations and within a dense ECM. Moreover, it was observed that, while a low oxygen 

concentration results in branched tumor morphology, increased ECM density gave rise to more compact 

tumors with less fingering morphology. Figure 4 shows a series of simulation results with this model. 

More recently, these authors investigated the impact of the microenvironment on the emergence of a 

motile invasive phenotype in an evolving tumor population using the same approach (54). The model 

focused on haptotaxis, i.e., directed cell movement along ECM gradients in the tissue, which is known to 
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be the dominant mechanisms in tumor invasion (55). Results showed that in identical simulation 

conditions, the tumor’s evolutionary dynamics converge to a proliferating or migratory phenotype, which 

suggests that the introduction of cell motility into the model changes the shape of the fitness landscape on 

which the cancer cell population evolves.  

 

Linking cell signaling to cell-cell and cell-matrix interactions: E-cadherin mediates cell-cell adhesion 

and plays a critical role in the formation and maintenance of cell contact, and loss of E-cadherin-mediated 

adhesion is a key feature of the EMT. Only recently, cancer modelers began to explore linking the 

intracellular signaling dynamics-related cell-cell adhesion and the extracellular consequences in invasive 

tumors. A molecular-microscopic multiscale agent-based lattice-free model was first developed for this 

purpose by taking into account the intracellular dynamics of the E-cadherin and β-catenin interactions and 

the physical forces on the cells (56). The model focused on a simplified β-catenin pathway which captures 

the key features of the cell adhesion process. Simulation results showed that down-regulation of β-catenin 

can be mainly driven by cell-cell contacts, and EMT can be achieved and reversed depending on the 

regulation of soluble β-catenin by local contacts. The intra- and intercellular protein interactions that 

govern cell–cell adhesion combined with cellular physical properties are also the driving forces of an 

essential mechanism that a cancer cell uses to attach to the endothelial wall, i.e., transendothelial 

migration (TEM) (57). Thus, with necessary extensions and modifications to the previous model (e.g., the 

addition of the Src pathway, which plays a principal role in TEM), the same modeling group examined 

the influence of different protein pathways in the achievement of TEM (58). Four cancer cell genotypes 

that differ in the adhesion protein pathways were considered. The genotypes were characterized by their 

capacity of creating N-cadherin-mediated bonds with the tunica intima and by their capacity of inducing a 

detachment of the endothelial–endothelial bonds by Src activity. Their results indicate that the slowest 
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migration was found in the case when both N-cadherin and Scr were knocked out, while the fastest case 

occurred when both N-cadherin and Scr remained active.  

 

2.3.3. Microscopic – Macroscopic 

 

Molecular-microscopic modeling has enjoyed good success in predicting the local behavior of cancer on 

scales of hundreds of microns to millimeters, and has proved a valuable tool for investigating the links 

between our current wealth of experimental molecular and cellular biology data and complex, emergent 

behavior of large multicellular systems. However, this approach is too computationally intense to simulate 

full tumors and their surrounding tissues. Furthermore, some important aspects of tumor biology, such as 

mechanical stresses, are best characterized by macroscopic, continuum models (10-11). Hence, there is 

need to dynamically combine microscopic models to describe important cell-scale phenomena (e.g., 

EMT) with the efficiencies of continuum models.  

 

Current microscopic-macroscopic models can be roughly categorized (with increasing levels of 

multiscalarity) as 1) composite hybrid models, where a microscopic model of one phenomenon is coupled 

with a macroscopic model of another, 2) continuum models with functional parameters, where continuum 

models express microscopic effects through heterogeneous, time-dependent parameters, and 3) adaptive 

hybrid models, where one or more phenomenon is represented using both microscopic and macroscopic 

descriptions, with a physically-motivated means of adaptively choosing the appropriate characterization. 

We focus here on representative examples of these three approaches; interested readers may also consider 

recent reviews (10) and books (11, 59). 

 



Thomas S. Deisboeck et al.: Multiscale Cancer Modeling 

 19

Composite hybrid models: To date, most hybrid microscopic-macroscopic models have been composite, 

where a discrete cell-scale representation of one phenomenon is combined with a continuum tissue-scale 

model of another. Some of the most important examples have been coupled models of tumor growth 

(using a continuum model) with angiogenesis (using a discrete model) (60-65). Zheng et al. (60) used a 

sharp interface continuum model of tumor growth, where the moving tumor boundary is modeled as the 

boundary between two incompressible fluids, with a discrete cellular automaton model of angiogenic 

sprout tip motion first introduced by McDougall, Chaplain, and Anderson (66-70).  In the viable rim of 

the tumor region (where substrate—oxygen, glucose, and growth factors—levels were higher than a 

threshold value), the tumor volume increased with a proliferation rate proportional to the substrate level.  

In the necrotic core (where the substrate level fell below the threshold), volume was lost due to cell lysis 

and subsequent fluid flux.  Cell mechanics were modeled by introducing a mechanical pressure P that was 

related to the local tissue velocity v by Darcy’s law (v = -µ∇P), and cell-cell adhesion was modeled as a 

surface tension along the tumor boundary. The boundary of the necrotic region released angiogenesis-

promoting factors that diffused out of the tumor, reached the sprout tips, guided their chemotaxis and 

branching behavior, and ultimately determined the vascular topology.  Simultaneously, the authors solved 

for the local substrate concentration throughout the tumor and surrounding tissue using a quasi-static 

reaction-diffusion equation. The models were further coupled by releasing substrate from the 

neovasculature and by restricting this nutrient source whenever the tumor pressure exceeded a threshold 

value. This model was able to reproduce tumor morphological instability caused by substrate 

heterogeneity, as well as biased tumor growth along the neovasculature (Figure 5a).  

 

More recently (64), Macklin et al. coupled a refined sharp interface model by Macklin and Lowengrub 

(71-74) with a more advanced discrete model of angiogenesis, i.e., dynamic adaptive tumour-induced 

angiogenesis (DATIA), by McDougall, Chaplain, and Anderson (70). In the DATIA model, blood flow 
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(including the effect of hematocrit) is solved throughout the vasculature as a coupled system of Poiseuille 

flow equations in individual segments of the neovasculature. The vessel segment radii vary according to 

the balance of wall shear stresses, vessel fluid pressure, and vessel elasticity—this, in turn, affects 

transport throughout the vasculature. The refined tumor model introduced a hypoxic region, where 

substrate levels were too low to promote cell proliferation but not so low as to induce necrosis. This 

region, rather than the necrotic core, released angiogenesis-promoting factors that drove chemotaxis in the 

angiogenesis model. The proliferating rim released matrix metalloproteinases (MMPs) that degraded the 

ECM in and near the tumor; this, in turn, affected the development of the vasculature due to haptotaxis of 

the sprout tips, as well as the evolution of the tumor by altering the distribution of the mechanical 

pressure. As an advance over the work by Zheng et al. (60), oxygen was released by the neovasculature at 

a rate proportional to the hematocrit level (to model oxygen transport by red blood cells). Furthermore, 

the vessel radius was determined by the balance of vessel pressure, wall shear stress, vessel elasticity, and 

the mechanical tumor pressure, leading to tumor vessel collapse as an emergent phenomenon (Figure 5b). 

This work was able to capture the complex dynamics of 1) hypoxia-induced angiogenesis, 2) increased 

oxygen supply by the vasculature following anastomosis of the vessels, 3) rapid subsequent tumor growth 

leading to increased proliferation-induced mechanical pressure, followed by 4) new regions of hypoxia 

due to vessel collapse (64). The results led the authors to hypothesize repeated hypoxia-angiogenesis-

growth cycles due to the combined effects of tumor shape instabilities, mechanical collapse of the 

neovasculature, and heterogeneous oxygen distributions. Similar recent work by Cristini, Frieboes, 

Lowengrub, Wise and co-workers combined a more general, multiphase model of tumor growth with a 

“free-swimming”, off-lattice angiogenesis model, and observed continued hypoxia and angiogenesis (61-

63, 65).  
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Continuum models with functional parameters:  In this approach, a continuum model is endowed with 

spatiotemporally-varying parameters that encapsulate smaller-scale biophysics, effectively including these 

as constitutive relations. Early notable examples include nonlinear oxygen consumption and proliferation 

terms in various tumor growth models. Ward and King used nonlinear, Michaelis-Menten-type uptake and 

proliferation terms to model the relationship between oxygen availability, proliferation, and observations 

that cell growth tends to saturate due to independent limiting factors even when supplied unlimited 

growth substrates (75-76).  Gatenby, Smallbone, and other colleagues more recently included similar such 

relationships between proliferation and substrate (oxygen and glucose) uptake, based upon the analysis of 

molecular-scale metabolism modeling (77-79). Macklin et al. recently observed Michaelis-Menten 

population dynamics as an emergent phenomenon from an ABM that varied the quiescent-to-proliferative 

phenotypic transition probability with oxygen, and validated the result by comparing against breast cancer 

patient data (Figure 6) (80-81).  

 

Based in part upon earlier parameter studies (60, 73, 82-83), Macklin and co-workers formulated a 

phenomenological relationship between the local ECM density E and a tumor’s mechanical response to 

pressure gradients by varying the mobility coefficient in Darcy’s law as µ = µ0/(1 + bE), where b is 

constant (10, 61, 64). Thus, the tumor tissue’s mechanical response (µ) decreases as the ECM density 

increases, modeling 1) the increased mechanical resistance of a denser ECM, and 2) the greater number of 

cell-ECM integrin bonds that must be broken for cell motion (73). This functional relationship can be 

derived through a careful upscaling analysis (e.g., as in (10) and later expanded in (84)) of the adhesive, 

repulsive, and frictional forces in mechanistic, force-based agent models (e.g., (49, 56, 58, 80, 85)).  

Similar models have been used by Macklin et al. in nonlinear chemotaxis and haptotaxis coefficient 

functions (10, 64), and other groups have used a nonlocal, integral term to model cell-scale adhesion 

effects in continuum tumor invasion models (86-88). Indeed, such functional relationships between 
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microenvironmental quantities and averaged cell phenotypic behavior could be incorporated in functional, 

spatiotemporally varying model parameters by analyzing or numerically sampling appropriate molecular-

microscopic models. 

 

This approach has been applied to multiscale chemotherapy modeling. Sinek, Frieboes, Cristini and co-

workers developed a cell-scale compartmental model of chemotherapeutic drug (doxorubicin) transport 

within a cell’s cytoplasm and nucleus, which they combined with a mechanistic model of DNA-drug 

adduct formation, repair, and apoptosis (89-91). Their model accounted for cell cycling effects by varying 

the probability of apoptosis with the substrate level via a Hill-type function. This model, in turn, informed 

a spatiotemporally-varying apoptosis parameter in a continuum model of tumor growth, which, when 

combined with reaction-diffusion equations for substrate and drug transport, was very successful in 

predicting 3D, whole-tumor response to doxorubicin administered via the (neo)vasculature. As shown in 

Figure 7, cell monolayer drug response data was used to calibrate the model, and subsequently used to 

predict 3D tumor response. As in our previous examples, the functional parameters are informed by 

upscaling mechanistic microscale models. Indeed, the Hill-type substrate dependence (which was 

imposed a priori in (89-91)) can be predicted as the emergent behavior of an ABM of Macklin et al (see 

Figure 6) (80-81, 85). 

 

Adaptive hybrid models: In the fullest realization of the “multiple hierarchies” paradigm discussed 

earlier, discrete and continuum representations of the same phenomenon are applied dynamically and 

simultaneously, along with a biophysical rule to appropriately select the correct representation throughout 

the spatiotemporal modeling domain. This fully hybrid approach is a ongoing, cutting-edge topic in the 

scientific computing community; until recently, this approach has largely been computationally infeasible, 
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and only recently have tools begun to emerge that can enforce mathematical and biophysical consistency 

between such simultaneous representations (10).  

 

In recent work, Kim, Stolarska, and Othmer coupled a viscoelastic model of a tumor’s quiescent and 

necrotic regions with an ABM of tumor cells in the outer proliferative rim (of thickness ~100-200 µm), 

allowing for more detailed treatment of molecular and cellular biology within the viable rim while making 

use of the computational efficiency of a continuum model for the majority of the millimeter-sized tumor 

(Figure 8a) (92-93). The discrete cellular model, which updated earlier work by Dallon and Othmer to 

include apoptosis and proliferation (94), described the cells as deformable, viscoelastic ellipsoids subject 

to adhesive, repulsive, and drag forces, as well as growth-induced stresses. The model included a careful 

transfer of forces from the discrete cells onto the continuum model in the quiescent region by 

interpolation of the discrete cells’ forces onto the nearest nodes of a triangular mesh; mass could be 

transferred between the discrete and continuum models as cells changed between the quiescent and 

proliferative states using a least-squares projection algorithm. This work is characteristic of one main 

approach to hybrid modeling, where the discrete and continuum representations are applied in pre-

specified regions.  

 

More recently, Wise, Lowengrub, Cristini and colleagues combined a 3-D multiphase continuum model 

(where each “voxel” of tissue is modeled as a mixture of fluid, ECM, and various cell populations, and a 

Cahn-Hilliard type equation to regulates the mechanics of the mixture) with a lattice-free, discrete model 

of migrating tumor cells (10, 62-63, 65). As in previous hybrid models, the discrete and continuum 

representations exchange forces with one another. As an advance over earlier hybrid modeling, their 

approach could dynamically convert between the discrete and continuum representations while 

conserving mass and momentum, using criteria such as cell density and hypoxia to trigger the conversion. 
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Mutation dynamics were modeled as transfers between the multiphase mixture cell components. The 

group investigated the epithelial-mesenchymal transition in hypoxic glioma (brain tumor) cells, and 

observed such behavior as single-file like strands of motile, palisading cells moving from the hypoxic 

regions towards high-oxygen environments—an effect observed in clinical histopathology (Figure 8b-c).  

The model was also able to treat the formation of satellite tumors in regions where discrete cells 

aggregated sufficiently to satisfy the continuum hypothesis (e.g., in normoxic regions) (Figure 8d). 

 

3. CONCLUSIONS: CHALLENGES AND FUTURE DIRECTIONS 

 

We outlined the different ways that recent models link lower-scale modules with those at higher-scale, in 

the interest of developing more realistic and predictive models of cancer. We emphasize the viewpoint 

that mathematical and computational cancer models, whether scale-specific or multiscale, are most 

efficient when they are as complex as necessary, yet as simple as possible (95). The integration of an ever 

growing body of experimental and clinical data will demand even broader ranges of expertise and 

knowledge thus will require the formation of cross-disciplinary and multi-institutional groups focusing on 

particular fine-grained building blocks or functional modules (96). In the following, we discuss several of 

these daunting challenges and conclude with future directions of multiscale cancer modeling.  

 

3.1. Parameter estimation 

 

It is widely accepted that the more quantitative experimental data are available to build and constrain the 

parameter values, the more likely models are to accurately describe observed behaviors (97). Parameters 

of scale-specific cancer models are already difficult to quantify, not to mention those for multiscale 

cancer models for which parameters have to be defined at different scales. Not all of these parameters are 
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experimentally available or even measurable with current techniques hence some have to be estimated by 

comparing model results to experiments. There are two classes of parameter estimation techniques that 

are frequently used in systems biology: local optimization (e.g., direct-search, and gradient-based 

methods) and global optimization (e.g., simulated annealing, branch and bound, and evolutionary 

algorithm). Each method has its advantages and disadvantages, and interested readers should refer to (98-

100) for a comprehensive survey of parameter estimation methods.  

 

Due to the complexity of cancer models and the quality of the data, over-fitting is a common problem in 

parameter estimation (101). When a model has many estimated parameters and the corresponding data are 

insufficient, over-fitting can lead to some unwarranted conclusions. To narrow the range of the parameter 

space, constraint-based modeling, which involves a multi-step procedure and accounts for both 

quantitative and qualitative data at the same time, may be an alternative choice (102). However, cancer 

modelers should be aware that, given the current underlying difficulty in estimating parameter values, 

many models may remain limited in the mechanistic insight they provide and in their capability to predict 

system dynamics in unforeseen conditions. To constrain these models and thereby improve predictive 

power, modelers must integrate insights from numerical parameter studies, direct experimental data from 

collaborators, and any information that can be gleaned from the experimental and theoretical biology 

literature (which itself may require reinterpretation with a mathematical point of view) (81). The hybrid 

modeling approach may also be useful for integrating patient data across a variety of spatial scales, where 

calibration to each datum occurs at the appropriate scale, and the information is subsequently allowed to 

propagate throughout the multiscale framework (11, 81). 

 

3.2. Computational demand 
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Significant efforts have been made to seek mathematical approaches and computational resources that 

will enable cancer models to be run in a reasonable period of time (103). It is generally accepted that if a 

model works on higher spatial and temporal resolution, it will need higher compute power and thus longer 

run time to accomplish computing tasks. Discrete or discrete-based hybrid models are more seriously 

affected by the compute intensity constraints because they are generally too detailed to simulate over a 

long period of time, particularly in large, 3D domains. One solution is to take advantage of very powerful, 

massively parallel supercomputers and develop numerical algorithms that can run on these machines. 

However, doing so may not resolve all the difficulties in handling the enormous amount of experimental 

and clinical data; it is also not practical in many current clinical settings thus would have limited usage. 

 

As discussed, adaptive hybrid modeling has the potential to save computational time while maintaining 

the predictive power of the model (see Section 2.2). Other methods for solving the compute intensity 

issue are also available, but are all at an experimental stage. For instance, the equation-free approach 

developed by Kevrekidis and co-workers (104-106) leverages the spatiotemporal scale separation to allow 

for significant gains in computational efficiency by alternating short bursts of appropriately initialized 

microscopic simulations with accelerated result processing at the macroscopic, continuum scale. 

Furthermore, methods from other modeling communities, such as the Heterogeneous Multiscale Method 

(HMM, e.g., (107-108)), can provide useful insight into efficient numerical methods that may be 

incorporated into the development of multiscale cancer models as well. By drawing on the strengths of 

these potentially very useful methods and integrating them into the next generation of multiscale cancer 

modeling, we may be able to produce more comprehensive and computationally efficient models to 

simulate tumor progression and predict treatment impact.  

 

3.3. Data sharing and model reusability 
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Data sharing is an active topic in the field of systems biology (95). We also advocate that, in order to 

avoid duplication of effort and thus waste of resources, achievements of publicly funded work including 

data and models should be made accessible to the community in a form where others can review and 

reproduce the modeling results, and then reuse and revise these resources in future works. In the 

following, we focus on two aspects of data sharing and model reuse. 

 

First, the data and models should be presented in standardized formats with clearly stated dependencies 

and problems. This will improve the reusability of models and clarify their limitations. In systems biology 

at large, there have been a few standards established, such as SBML for biochemical pathways, CellML 

for biophysical models, and FieldML for spatial fields (109). These standards define how models are 

structured, how the mathematical equations are encoded, and how units are defined. Establishing these 

standards has been a significant step towards achieving a robust foundation for the modeling community; 

such standardization efforts, including amending existing or creating new ontologies, can facilitate 

translation of multiscale models into and eventual adoption of these in silico tools in clinics. 

 

Second, to store and exchange modeling tools, the cancer modeling community needs digital repositories 

of models provided by researchers from academic, governmental and corporate laboratories. Web services 

are needed to connect and integrate these currently often incompatible models and tools for data 

acquisition, storage, analysis and presentation in order to bridge the integration gap (18). In brief, cancer 

modelers need to efficiently share data, information and knowledge across geographic and organizational 

boundaries within the context of distributed, multi-disciplinary and multi-organizational collaborative 

teams, while at the same time effectively protecting data ownership and data security.  
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Many web-based systems biology communities or databases have been created over the past years, and 

some of them are developed based on semantic technology (see (110) for a review). Among them, the 

Center for the Development of a Virtual Tumor (CViT) (111) is building an ever-growing community of 

researchers around the world dedicated to cancer modeling. It currently provides cancer researchers a 

community-driven web platform with functions including wikis, blogs, forums, member profiles, and 

RSS-based news updates (112). It also develops NIH/NCI-caBIG® compliant infrastructure tools to 

facilitate interaction among its contributing scientists. Members of CViT come together online on a 

regular basis to discuss cutting-edge literature on CViT’s online forums which separates CViT from other 

model repositories such as BioModels (113). Additionally, the social networking aspect of the site allows 

research teams to collaborate from anywhere around the world in a workflow designed specifically for the 

cancer modeling community. Recently, CViT released the Digital Model Repository (DMR), an 

innovative web platform for the exchange of cancer models (114). Cancer investigators can upload their 

models, experimental data, and simulation results and publish them to other DMR users of their choice 

who will then be able to access those files. The DMR also implements an innovative elicensing workflow 

and is built using semantic web technologies through the Resource Description Framework (RDF; a 

standard metadata model for describing the relationship between two objects (115)). The newest feature 

of the DMR is the Computational Model Execution Framework (CMEF). Its aim is to allow executable 

files to be uploaded as part of a model. The owner of the model can indicate variable parameters which 

can be defined for each run, and specify details of the model, including programming language and 

runtime computing environment. Others can either download the model and run it on their own 

computers, or simply execute the model using computing resources provided by the DMR. Altogether, 

CViT and its semantic services help to advance the cancer modeling field in facilitating web-based 

multidisciplinary cancer research. 
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3.4. Personalized medicine 

 

Approaches provided by systems biology are beginning to impact medicine (116). In treating cancers, the 

integration of computational and experimental techniques may improve our abilities to design more 

efficient cancer therapies. Corresponding applications include biomarker validation, development of more 

accurate diagnostic tests, and targeted drug discovery - all geared towards the optimization of 

individualized cancer therapy.  

 

The conventional population-based approach for therapeutic developments in clinics still relies on a series 

of randomized clinical trials aimed at searching for favorable yet averaged treatment outcome (117). 

However, patient responses to a particular drug or therapy are known to fall into a more or less wide 

range that deviates from this averaged behavior. Multiscale cancer modeling may eventually help to 

explain not only why some therapies fail while others prove to be effective in controlling tumor 

progression, but also why a particular treatment works only in a fraction of patients. Models will have to 

incorporate patient-specific experimental and clinical data at all biological levels, including, e.g., genomic, 

proteomic, anatomical, physiological, and pathological data. Training the model on a patient’s data will 

yield a more accurate description of the specific kinetics of disease progression. Hence, this approach 

should provide a higher predictive power than that achieved with pooled data only and thus should be able 

to guide personalized treatment strategies more accurately to improve outcome (117). Moreover, 

multiscale cancer models can be used to help characterize a patient’s specific biomarkers (ranging from 

critical pathway proteins to phenotypic profiles and imaging patterns) and then compare these ‘cross-scale 

signatures’ with pooled data from conventional clinical practice or from a trial with the candidate drug 

being applied, in an effort to simulate the specific response of the patient. Introducing multiscale cancer 

modeling to medicine has the potential to facilitate the breakthrough of personalized medicine, and 
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eventually maximize advances in science and technology for the benefit of cancer patients by helping 

select or optimize preventative and therapeutic patient care. 

 

In summary, multiscale cancer modeling is a most promising, innovative research area that constitutes a 

critical driver for the field of integrative cancer systems biology. Challenges to the success of this 

approach arise as a result of our still limited understanding of the complex, dynamic nature of cancers, the 

often constrained access to appropriate experimental and clinical data, the difficulties in validating models 

against these data, and the challenges involved in communicating and sharing modeling methods amongst 

the field’s multiple stakeholders. However, by drawing on the collaborative effort and expertise of 

scientists from different disciplines and the continuing development of advanced, innovative 

computational and mathematical methods, we believe that multiscale cancer modeling will reach its full 

potential in guiding targeted experimental research, in enabling patient-specific predictions and thus in 

accelerating personalized medicine.  
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ABSTRACT: 

Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer 

modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, 

and enable more accurate predictions. A growing number of examples illustrate the value of this approach 

in providing quantitative insight on the initiation, progression, and treatment of cancer. In this article, we 

introduce the most recent and important multiscale cancer modeling works that have successfully 

established a mechanistic link between different biological scales. Biophysical, biochemical, and 

biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling 

methods that are moving predictive multiscale cancer modeling towards clinical application. Furthermore, 

because the development of multiscale cancer models requires a new level of collaboration between 

scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and 

computer science, an innovative web-based infrastructure is needed to support this growing community. 

 

Acronyms list: ABM: agent-based modeling or agent-based model 

CViT: Center for the Development of a Virtual Tumor 

DATIA: dynamic adaptive tumour-induced angiogenesis 

DCIS: ductal carcinoma in situ (of the breast) 

ECM: extracellular matrix 

EGFR: epidermal growth factor receptor 

EMT: epithelial–mesenchymal transition 
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MD: molecular dynamics 

MMP: matrix metalloproteinase 

ODEs: ordinary differential equations 

PDEs: partial differential equations 

PLCγ: phospholipase Cγ 

RTK: receptor tyrosine kinase 
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FIGURE LEGENDS 

 

Figure 1: Schematic illustration of the biological scales of significant relevance for cancer modeling 

including atomic, molecular, microscopic (tissue/multicellular), and macroscopic (organ) scales. Different 

scales represent different spatial and temporal ranges; the methods for modeling these distinct scales 

differ as well. Multiscale cancer modeling requires the establishment of a linkage between these scales.  

 

Figure 2: Mechanistically linking EGFR point-mutations to altered signaling characteristics leading to 

the onset of oncogenic transformations. (a) Branched signaling model of the ErbB1, i.e., through two 

parallel phosphorylation pathways, corresponding to tyrosine 1068 (Y1068) and tyrosine 1173 (Y1173). 

(b) Calculated ERK and Akt phosphorylation levels in units of nM under serum starved (EGF-) and serum 

cultured (EGF+) conditions for cells with normal ErbB1 (EGFR) expression and ErbB1 over expression. 

In each panel the Y1173-ErbB1 affinity (KM) is varied along the x-axis (log value relative to wild-type) 

and the Y1068-ErbB1 affinity (KM) is varied along the y-axis. The blue circle denotes the wild-type, the 

green denotes the L834R mutant and the yellow the Del L723-S728 ins S (or Del) mutant cell lines. 

Reproduced with permission from (31). 

 

Figure 3: (a) Experimentally-supported molecularly-driven cellular phenotypic decision algorithm. 

Decisions are made dependent on the molecular dynamics of PLCγ and ERK, two downstream signaling 

molecules of EGFR, for options (2)-(4). Beginning with a quiescent cancer cell, its phenotype for the next 

step is determined as follows: (1) cell death, if the on-site glucose level is insufficient; dependent on the 

molecular dynamics of PLCγ and ERK, (2) the cell will remain quiescent if the rate of change of both 

PLCγ and ERK remain below their corresponding thresholds; (3) the cell will proliferate (and a new cell 

will then occupy an adjacent free location) if only the rate of change of ERK exceeds its threshold; (4-5) 
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the cell will migrate to the adjacent free location that has the greatest chemotactic cue weight if the rate of 

change of PLCγ (regardless of ERK) exceeds its threshold. (b) The effects of asynchronous combinatorial 

change in EGF and TGFβ concentrations on tumor volume represented by cell number (left panel) and 

tumor expansion rate represented by the inverse simulation step (right panel). In the tumor volume 

evaluation, the largest tumor volume is reached under conditions of high TGFβ and low or standard (with 

a variation of 1.0-fold) EGF concentrations. However, in the tumor expansion rate evaluation, the most 

aggressive tumor expansion rate (fewest simulation steps) occurs under conditions of high EGF, 

regardless of TGFβ concentrations. Adapted with permission from (48). 

 

Figure 4: Background oxygen concentration and matrix density influence the growth rate and tumor 

morphology. Oxygen concentration level is represented by c0 and matrix density by E. Low oxygen 

concentration gives rise to branched tumor morphology, while the matrix density tends to stabilize the 

morphology, giving rise to wider branches in a more dense matrix. Proliferating cells are shown as red, 

quiescent cells as green, necrotic cells as yellow, dead cells as blue; empty grid points are displayed in 

white. Adapted with permission from (53). 

 

Figure 5: Early microscopic-macroscopic composite models of tumor-induced angiogenesis and growth 

response. (a) A continuum tumor model (dark curve in top plot) is coupled with a discrete angiogenesis 

model (thin curves in top plot), which releases oxygen (bottom plot) that fuels tumor growth, shape 

instabilities such as fragmentation, and co-option of the vasculature. Reproduced with permission from 

(60). (b) A continuum tumor model (top left: red = proliferative rim, blue = hypoxic region, brown = 

necrotic core) is coupled with an advanced discrete angiogenesis model (top left: brown transparent 

curves), whose topology is determined by sprout tips (top left: green points) that respond chemotactically 

to growth factors released by the blue hypoxic region, and haptotatically to the ECM density. The 
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proliferating tumor generates mechanical pressure (bottom left) that can collapse vessels, thereby 

obstructing hematocrit transport (bottom right) and subsequently oxygen transport delivery (top right). 

This, in turn, feeds back into the tumor growth pattern, the distribution of oxygen and thereby the spatial 

distribution of angiogenesis-promoting factors, and consequently the neovascular network topology. 

Reproduced with permission from (64). 

 

Figure 6: Macroscopic-scale functional relationships as emergent phenomena from microscopic models. 

The volume-averaged behavior of an agent-based model of ductal carcinal in situ (DCIS)—a type of 

breast cancer where growth is constrained to a breast duct—was analyzed to postulate a Michaelis-

Menten type relationship between oxygen (σ) and proliferation (PI) as an emergent phenomenon of the 

model (80)—see the solid curves above. This hypothesized relationship was later validated by analyzing 

post-mastectomy Ki-67 immunohistochemical data for proliferation in two separate breast ducts (dashed 

curves), with excellent qualitative and quantitative agreement (81).  

 

Figure 7: Calibrated macroscopic behavior as mechanistic functional relationships. Sinek, Frieboes, 

Cristini and co-workers (89-91) used a mechanistic, compartmental cell-scale model to determine a 

calibrated relationship between the local substrate level, doxorubicin level, and the spatiotemporally-

varying tumor apoptotic response to chemotherapy. After calibrating to experimental monolayer data 

(dark gray bars), the same tumor types were simulated in 3D, with the model accurately predicting the 

tumor’s heterogeneous apoptotic response (light gray bars) to the large substrate and doxorubicin 

substrates within the tumor. This work not only demonstrates the capacity for a calibrated multiscale 

model to provide better predictions of 3D tumor behavior than monolayer experiments alone, but also 

shows how analysis and simulation of microscopic models can motivate improve constitutive laws in 

continuum models that properly incorporate microscopic effects. Reproduced with permission from (91). 
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Figure 8: Hybrid microscopic-macroscopic modeling. (a) Kim, Stolarska and Othmer (92-93) coupled a 

discrete model of proliferating cells (red circles) with a viscoelastic continuum model of the necrotic core 

(cyan solid), by coupling the triangular computational mesh through the quiescent region (blue lines). The 

model could successfully transfer forces and masses between the two representations. Reproduced by 

permission from (92).  (b-d) Wise, Lowengrub, Cristini, Frieboes and colleagues (10, 62-63, 65) used a 

discrete model of motile glioma cells (blue dots in (b) and (c)) to model the EMT in glioma, and a 

continuum mixture model (gray regions in (b) and (d)) to model regions of tumor cell aggregation. The 

model was successful in dynamically choosing between discrete and continuum representation according 

to localized biophysical criteria (in this case, a threshold density, coupled with hypoxic considerations), 

while maintaining mathematical consistency between the models and conserving mass and momentum 

during any switch. Palisading cells were observed to move up oxygen gradients (blue dots; see (c)), and 

once cells aggregated in normoxic regions in sufficient numbers, they were converted back to the 

continuum representation, thus creating a satellite tumor (outer gray regions in (d)). Adapted with 

permission from (63, 65). 
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FIGURE 8. 

 

 

 


