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Cancer is arguably the ultimate complex biological system. Solid tumors
are microstructured soft matter that evolves as a consequence of spatio-
temporal events at the intracellular (e.g., signaling pathways, macromolecular
trafficking), intercellular (e.g., cell–cell adhesion/communication), and tissue
(e.g., cell–extracellular matrix interactions, mechanical forces) scales. To gain
insight, tumor and developmental biologists have gathered a wealth of molecular,
cellular, and genetic data, including immunohistochemical measurements of cell
type-specific division and death rates, lineage tracing, and gain-of-function/loss-
of-function mutational analyses. These data are empirically extrapolated to a
diagnosis/prognosis of tissue-scale behavior, e.g., for clinical decision. Integrative
physical oncology (IPO) is the science that develops physically consistent
mathematical approaches to address the significant challenge of bridging the nano
(nm)–micro (µm) to macro (mm, cm) scales with respect to tumor development
and progression. In the current literature, such approaches are referred to as
multiscale modeling. In the present article, we attempt to assess recent modeling
approaches on each separate scale and critically evaluate the current ‘hybrid-
multiscale’ models used to investigate tumor growth in the context of brain and
breast cancers. Finally, we provide our perspective on the further development and
the impact of IPO.  2011 John Wiley & Sons, Inc. WIREs Syst Biol Med 2011 DOI: 10.1002/wsbm.158

INTRODUCTION

Awealth of qualitative evidence links disease
progression with tumor morphology, invasion,

and metastasis. Brain tumors are the 10th most

†These authors contributed equally to this work.
∗Correspondence to: vcristini@salud.unm.edu, achauviere@salud.
unm.edu
1Department of Pathology, University of New Mexico, Albu-
querque, NM, USA
2Los Alamos National Laboratory, Los Alamos, NM, USA
3STMC, University of New Mexico, Albuquerque, NM, USA
4Okinawa Institute of Science and Technology, Okinawa, Japan
5Department of Molecular and Cellular Biology, Lester and Sue
Smith Breast Center, Baylor College of Medicine, Houston, TX,
USA
6Department of Radiology, Lester and Sue Smith Breast Center,
Baylor College of Medicine, Houston, TX, USA
7Division of Mathematics, University of Dundee, Dundee, UK
8Center for Applied Molecular Medicine, Keck School of Medicine,
University of Southern California, Los Angeles, CA, USA
9Department of Chemical and Biomedical Engineering, University
of New Mexico, Albuquerque, NM, USA

DOI: 10.1002/wsbm.158

common tumor in adults and the 7th leading cause
of death in developed countries. Glioblastoma is the
most deadly, with life expectancy of 15–18 months
after diagnosis. Brain tumors are graded, not
staged. The WHO classification system, despite being
almost uniformly accepted, is an imperfect grading
system, since tumors within the WHO grade IV
classification have drastically different prognosis,
from a high 5-year survival for medulloblastoma
to short-term mortality for glioblastoma.1 The
new WHO approach incorporates and interrelates
morphology, with a few cytogenetic, molecular
genetic, and immunologic markers, in an attempt
to construct a cellular classification.2 For instance,
diagnostic morphology for grade IV includes cellular
atypia and nuclear pleomorphism, necrosis, vascular
or endothelial proliferation, and pseudo-palisading.
Diffuse infiltration of stroma is always present, with
tumors cells as far as several centimeters away from
the radiologically identified lesion. Similarly in breast
cancer, the second most prevalent cancer among
women in the United States, pathologic criteria are
broadly defined and widely varying response to
therapy and outcomes for tumors with the same
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diagnosis are common.3 For example, approximately
80% of breast cancers are diagnosed as ‘no special
type’ and are lumped together as ‘infiltrating ductal
carcinoma’. Yet these tumors are associated with
differing morphological features, gene expression
profiles,4,5 responses to therapy, and patient survival.

In the last 10 years, a large amount of new
molecular data has emerged from genome-wide
association studies of glioblastoma6,7 and breast
cancer.8,9 From a clinical point of view, broad
histopathologic criteria are used to diagnose these
tumors, made on fixed specimens, and prognose actual
tumor behavior in the living patient that evolves over
time. However, the variability of tumor progression
and response to therapy demonstrate that more details
about individual tumor are critically needed. For
instance, the abundance of microscale phenotype data
(cell architecture, mitotic rates, etc.) has not been
integrated into a comprehensive picture of individual
tumor behavior. The gap between the microscopic
underlying processes of cancer cell behavior and the
emerging macroscopic tumor growth and progression
must be urgently addressed. This includes the need
for a better understanding of the interplay between
a tumor and its micro-/macro-environment, which
influences growth and treatment response and remains
poorly understood.10,11

A main objective of integrative physical oncol-
ogy (IPO) is to employ mathematical modeling to
develop biophysically sound mechanistic links among
the multimodal, multidimensional, and multiscalar
phenomena involved in tumor progression. Mathe-
matical modeling provides rigorous tools to link and
quantify the multifactorial connections between vari-
ables governing growth, prognosis, and treatment.
The resulting unified model of tumor behavior can
provide a deeper fine-grained diagnosis, thus leading
to more accurate and definitive predictions of treat-
ment response and survival. To date, models have
been developed at each of the relevant scales and
were partially successful in answering specific ques-
tions on tumor development. In the following, we
briefly review and discuss some of these recent efforts
at the subcellular, cellular, and tissue scales applied
to breast and brain cancers. We chose breast tumors
[ectoderms with a basement membrane (BM) that
should be penetrated] and brain tumors (neuroecto-
derms with direct invasion into stroma) because of
their differences and similarities, as a support to intro-
duce key issues and illustrate concepts that we discuss
in the paper. Our choice of these specific cancer types
is also motivated because they present different chal-
lenges for modelers and are, to our knowledge, the
only cancer types that have been investigated from an

IPO perspective. On the basis of our critical analysis
of these recent modeling efforts at each scale and the
recent attempts at hybrid multiscale modeling, which
reveals crucial issues, we discuss our conceptual view
of IPO and outlines its future directions and applica-
tions, including the novel approach of ‘mathematical
pathology’.

SUBCELLULAR SCALE

Tumors arise initially from a single cell. A normal
cell (a.k.a. cell-of-origin) transforms step-by-step into
a tumor cell because of various genetic and epigenetic
changes.12–15 The ways in which this happens
are manifold, as are the biological components
and signaling pathways involved.12 Among the
best studied key molecules/pathways directly or
indirectly associated with cancer are Ras/ERK,
PI3K/Akt/mTOR, VEGF, Rb, p53, and Wnt, each
of which has been intensively targeted by drug
development efforts.

Depending, in particular, on the cell-of-origin,
its potency, the number and kinds of carcinogenic
mutations, tumors can develop largely varying charac-
teristics with respect to their cellular morphology, pro-
liferative activity, and therapeutic response.15 More-
over, populations of cells within a single tumor are
often heterogeneous, suggesting distinct dynamics at
the single cell level.15 Their concerted action, together
with influences from the microenvironment, gives rise
to a specific tumor phenotype. Hence, identification
and understanding of the tumor-specific biochemical
mechanisms at the subcellular scale can greatly aid
researchers in the development of tailored therapeutic
strategies.

Key Issues and Modeling Efforts
Accurate modeling and simulation of single cell
dynamics is a challenging task because of the vast
number of biochemical species involved, the often
heterogeneous distribution of molecules inside the
cell, and the discrete and stochastic nature of
biochemical reactions. Moreover, the intracellular
environment is geometrically complex and involves
a plethora of correlated spatiotemporal processes that
are, per se, multiscaled. Typical timescales of interest
range between microseconds (molecular diffusion) to
weeks/years (cell lifespan), while spatial scales range
from angstroms or nanometers (molecules) to tens of
micrometers (cell size).

When choosing an appropriate modeling
description, one has to decide (for each scale) if
a given subcellular system can be best described
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as discrete or continuous, spatially homogeneous or
heterogeneous, deterministic or stochastic, and how
hybrid or multiscale modeling approaches can be con-
structed starting from the single cell level.16 Aside from
equation-based models (ordinary, stochastic, partial,
and delay differential equations), accelerated simula-
tion algorithms based on master equations, such as
delay17,18 or spatial Monte-Carlo,19 or even highly
resolved particle-tracking methods20 have become
popular for spatiotemporal modeling of intracellu-
lar processes. Recently, agent-based modeling (ABM)
and simulation methods have also shown great
promise for understanding phenomena in biology and
medicine.21

Alternative approaches that have been used
in the context of cancer modeling are rule-based
models and Boolean networks. Rule-based modeling
involves the representation of molecules as structured
objects and their interactions as rules for transforming
the attributes of these objects.22 Boolean network
models have been suggested for problems where no
quantitative information on reaction rates and initial
conditions is available. Among other applications,
Boolean networks have been used for modeling
receptor crosstalk in endothelial cells, mapping
environmental cues to cells.23

During the last decade, many modeling
efforts have addressed specific signaling pathways,
including the aforementioned carcinogenic and related
types.24–27 However, many models in the literature
assume a closed system, often devoid of the crosstalk
between pathways. Moreover, most models follow a
mechanistic, continuous deterministic approach and
assume spatial homogeneity in the distribution of
participating molecules. Inevitably, this ignores any
potential discrete or stochastic effects, while there has
been increasing evidence that spatial heterogeneities
significantly affect the dynamics.28,29

There are several issues that, to the best of
our knowledge, have not yet been considered. For
instance, a single mutated allele (as opposed to
mutation of both alleles) in tumor-supressor genes
may be sufficient for cancer progression.30 Logically,
the mix of mutated and nonmutated copies of a
gene might introduce additional complexity, as each
allele would express different products. Also, there
are many known epigenetic effects related to various
types of cancer.31–34 For instance, low level DNA
methylation in tumor cells (as compared to DNA
methylation levels in normal cells) was one of the first
epigenetic abnormalities observed in human cancer
cells.14 Changes in the epigenome are also linked
to a higher metastatic potential in many tumor
types.14

From Intracellular to Tissue Level
Tumor cells, like normal cells, communicate with
their local environment. Each cell receives a multitude
of signals from its surroundings, processes these
signals with a complex network of highly intertwined
pathways, and in turn signals to other cells. The
latter usually happens via direct contact or over short
distances by secreting signaling molecules. In tumor
cells, these signals can affect cell–cell and cell–ECM
(extracellular matrix) interactions, eventually causing
loss of cellular adhesion, induction of angiogenesis,
cell migration, tissue invasion, and metastasis. At this
stage, the initially local single cell defect has developed
into a multicellular process at the tissue, organ, or even
organism scale.

CELLULAR SCALE: A CASE STUDY

Cancer progression and development can be
viewed as a sequence of functional traits or
phenotypes that cells have to acquire if a neoplasm
(benign tumor) is to become an invasive and
malignant cancer. Subcellular mechanisms and their
corresponding microenvironmental feedbacks control
the cell’s phenotype, which in turn determines tumor
behavior. Thus, cell interactions with the local
microenvironment, which includes neighboring cells
of same and different types and various components
of the surrounding tissue, play a major role in
cancer progression. Various modeling techniques have
been developed to describe the characteristics and
behaviors of individual cells interacting with their
microenvironment. These approaches are typically
based on treating cells as discrete, interacting
entities and correspond to cellular automata (CA),
cellular Potts models (CPM), agent-based models, and
immersed boundary models, depending on the level
of complexity used to represent cells, i.e., from single
points to deformable bodies. We refer the reader to the
recent review, Ref 35, for details on these methods.

Rather than trying to present an extensive
review, we use recent applications to ductal carcinoma
in situ (DCIS), a significant precursor to invasive
breast carcinoma whose growth is confined to the
duct lumen, to illustrate key issues in cell-scale
cancer modeling, as a support of our discussion
on the future requirement and challenges of IPO.
DCIS is commonly detected as a subtle pattern
of calcifications in mammograms; mammograms
are also used with other imaging modalities to
plan surgical resection (lumpectomy) of the tumor,
but multiple surgeries are often required to fully
eliminate DCIS. This highlights deficiencies in current
surgical planning and, more generally, an insufficient
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understanding of the biophysical underpinnings of
DCIS.

Key Issues and Modeling Efforts

Stem/Progenitor Cell Hierarchies
In DCIS, proliferation, apoptosis, and stem/progenitor
cell differentiation cell dynamics are dysregulated,
leading to cell overproliferation.36 In Ref 37, a cellular
automaton model—where the cells are uniformly
sized and restricted to a Cartesian mesh—was
developed to study the impact of stem cell-progenitor
cell hierarchies on DCIS development, finding that
these hierarchies increase genetic heterogeneity and
accelerate DCIS evolution.

Cell Polarization and Complex
Microarchitectures
Noncancerous breast duct epithelial cells are
polarized: integrins on the cells’ basal surfaces
adhere to ligands on the BM, E-cadherins on
the cells’ lateral sides adhere to E-cadherin on
neighboring cells, and the cells’ apical sides are
typically devoid of adhesion receptors. When cells
lose adhesion to the BM, they commit anoikis, a
specialized type of apoptosis that is triggered by
loss of integrin signaling (Ref 38 and references
therein). In DCIS, cell polarization and anoikis
are dysregulated, and complex microstructures (e.g.,
micropapillary and cribriform DCIS) can form in the
viable rim. In Refs 39–42, an immersed boundary
model of DCIS was developed, where each cell’s
morphology is evolved under the balance of adhesive
and fluid mechanical forces. The authors explicitly
modeled the cells’ polarized adhesion, with functional
ties to proliferation and apoptosis via simplified
signaling models. The model produced complex
micropapillary-like structures (Figure 1, left). The
work in Ref 43 developed a lattice-free, agent-based

model of DCIS, where each cell is a sphere that
moves under the balance of adhesive and repulsive
forces. Cells were assumed to adhere to at most
two neighbors (as a simplified phenomenological
model of polarization). The model reproduced
micropapillary- and cribriform-like microstructures
(Figure 1, right). The authors hypothesized that
the cribriform subtype arises from micropapillary
DCIS when overproliferation causes micropapillae
to connect around ‘microlumens’. In these modeling
efforts, mechanistic cell-scale models that recapitulate
complex known tumor microstructures have given key
insight on their biomechanical underpinnings.

These results could be improved by more accu-
rately modeling the cells’ individual morphologies,
which is possible using a cellular Potts model. In a
CPM, each cell occupies a finite, simply connected set
of grid points in a Cartesian mesh, which enables the
model to capture and characterize dynamic changes in
a cell’s size, shape, and location. This multicellular sys-
tem is updated by a Monte-Carlo technique to reduce
the total system energy, which includes separate terms
to model motility, growth, and cell–cell and cell–BM
adhesion. Key signaling events (e.g., anoikis) can read-
ily be implemented in each cell. See Refs 44–46 and the
references therein, and the Hybrid-Multiscale Models
section below. The cellular Potts approach has been
used to model the three-dimensional (3D) avascular
tumor growth response to microenvironmental sur-
vival signals,44 and also to elucidate the impact of
cell–ECM interactions on glioma invasion in nonuni-
form ECM structures.45

Hypoxia and Invasion
Growth substrates (particularly oxygen and glucose)
can only reach a (necessarily avascular) DCIS tumor by
diffusion; as the tumor grows, oxygen gradients form,
leading to hypoxia and eventually (comedo) necrosis.
Over long timescales, microcalcifications can form in

Iteration: 200 Iteration: 500 Iteration: 800 Iteration: 1000

FIGURE 1 | Mathematical modeling of complex ductal carcinoma in situ (DCIS) microstructures: (Left) An immersed boundary model produced
micropapillary-like DCIS structures when cell polarization was assumed. (Reprinted with permission from Ref 42. Copyright 2007 Hindawi Publishing
Corporation). (Right) An agent-based model predicted that polarized DCIS cells form micropapillary structures (iterations 200 and 500) that merge
into cribriform-like structures (iterations 800 and onward). (Reprinted with permission from Ref 43. Copyright 2010 Elsevier)
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the necrotic debris (Ref 38 and references therein). In
Refs 47–49, a cellular automaton model was employed
to investigate the impact of hypoxia, glycolysis (a form
of anaerobic metabolism), and acidosis (a buildup of
acidic glycolysis byproducts) on DCIS invasion. The
authors found that sustained hypoxia can select for
aggressive DCIS subclones that colonize the viable rim
and eventually invade the stroma, thus providing new
hypotheses on DCIS invasion.

Necrotic Core/Calcification Biomechanics
The authors in Refs 38,50–52 recently developed an
agent-based model of DCIS, which included detailed
necrotic cell volume changes and the first model
of calcification. After a careful calibration to the
biological literature and patient data, the model
predicted that the mechanical separation between
the viable rim and the necrotic core arises because
of the fast timescales of necrotic cell swelling and
lysis. The authors determined that necrotic cell lysis
acts as a major biomechanical stress relief; as a
result, much of the proliferative cell flux is directed
toward the duct center, rather than along the duct.
An additional consequence is the formation of an
‘age-structured’ necrotic core, with the oldest (often
calcified) material in center and the newest material on
the perinecrotic boundary (Figure 2). These results are
consistent with patient histopathology (see Ref 38).
The model also predicted that DCIS tumors grow
linearly at 7–10 mm/year and that the tumor’s
mammographic (calcification) size linearly correlates
with the tumor’s pathologic size. Both these results
are in excellent quantitative agreement with the
clinical literature. These results show that rigorously
calibrated mechanistic cell-scale models can explain
macro-scale observations in DCIS histopathology and
radiology and may eventually assist surgical planning
by augmenting mammography with model-predicted
surgical margins.

Integration with Multiscale Modeling
Frameworks
As the intermediate scale between the molecular (intra-
cellular) and tissue scales, cell-scale models will play
an essential role in emerging multiscale modeling
frameworks,53,54 in which the intracellular scale can
be directly incorporated into cellular-scale models by
including a molecular-scale model in each cell. Cell-
scale effects are currently incorporated into tissue-
scale models through hybrid techniques (see following
section). Equally important is that cell-scale models
can be directly compared with clinical measurements,
making them ideal for calibrating multiscale frame-
works. Using the rigorous agent model calibration

FIGURE 2 | Patient-calibrated ductal carcinoma in situ (DCIS)
simulation. After calibration to patient immunohistochemistry and
morphometric measurements, an agent model correctly reproduced the
solid-type DCIS microstructure: an 80-µm viable rim with most frequent
proliferation (green cells) on the outermost edge and apoptosis (red
cells) throughout, a mechanical separation at the perinecrotic boundary,
and an ‘age-structured’ necrotic core with increasing pyknosis (nuclear
degradation) and calcification (progression indicated by the shade of
red) toward the duct center. The bright red central region is a
radiologically detectable casting-type microcalcification. These features
are seen in patient hematoxylin and eosin stained histopathology,
including the mechanical gap (increased by tissue dehydration),
increasing pyknosis toward the duct center and central calcium
phosphate microcalcifications.

developed in Ref 38 along with a novel upscaling
argument, the authors of Ref 50 calibrated a steady-
state continuum model of DCIS volume to immuno-
histochemical and morphometric data from several
patients. The model accurately predicted the overall
tumor volume in 14 of the 17 cases, thus demonstrat-
ing the potential for cell-scale models to rigorously
calibrate multiscale frameworks to molecular and cel-
lular data, by dynamic upscaling procedures.

TISSUE SCALE

To a large extent, the tissue scale is the clinically
relevant scale of the disease. It is the scale at which
first symptoms are noticed, e.g., by finding an abnor-
mal mass during physical examination (organ level)
or by discovering elevated amount of chemicals such
as tumor markers or abnormal immune system pro-
teins in blood test (systemic level). It is also the scale
at which secondary imaging investigations are per-
formed, such as magnetic resonance imaging (MRI) or
mammography for breast tumor. MRI is particularly
helpful in determining macroscopic characteristics of
tumors, such as the approximate size and morphol-
ogy, which are necessary information for tumor grade
classification and more accurate treatment planning.
The tissue scale is the relevant one for surgical and
chemotherapy and radiotherapy planning.

Key Issues and Modeling Efforts
At the tissue scale, a tumor is not only the macroscopic
manifestation of the underlying processes at smaller
scales but also the result of its interactions with
the surrounding healthy tissue. While the molecular
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and cellular mechanisms result in carcinogenesis,
tumor growth also depends in a complex manner
on biochemical and biophysical transport where
continuum modeling (e.g., mechanics) is required.
On an individual patient basis, cancer modeling
at the tissue scale may translate into an improved
understanding of the timescale of tumor growth, and
consequently, provide answers to practical clinical
questions such as: where and what to resect; where
to target and how to optimize radiotherapy; how
drugs, antibodies, or small molecules are transported
through tissues into neoplastic cells; and how this
transport affects therapeutic response.

Modeling and computational approaches for
macroscopic tumor growth require the description of
the dynamics of billions of tumor cells. Such a descrip-
tion is possible only by averaging single cell behaviors
into macroscopic quantities that characterize observ-
ables of tissue growth, such as tumor size and growth
rate, cell density, mechanical pressure, and stress. At
this level of description, approaches can be split into
cell population dynamics and continuum models. Both
approaches are based on phenomenological functional
relationships that describe particular macroscopic fea-
tures in terms of model parameters, most of which are
not direct measurable quantities at the cellular scale
but account for average cell behavior at the tissue
scale. Typical timescales range from days (e.g., for
in vivo growth of multicellular spheroids) to months
(mean life expectancy is 12–15 months for glioma)
and years (breast cancer is often a 20-year long dis-
ease process), while spatial scales are of the order of
millimeter and centimeter or more when considering
the whole human body.

Cell population dynamics models are used when
no clear spatial structure emerges or it is not taken
into account. This may be the case when the system
of interest looks very well mixed with respect to its
various components (e.g., different cell populations)
or in the absence of pertinent morphological and
structural tissue data. Such systems are considered
spatially homogeneous and are modeled by selecting
the most appropriate description among the large
variety of differential equations, i.e., ordinary, delay,
stochastic, and age-structured. Examples of work are
the modeling of carcinogenesis55 and the interactions
between a malignant tumor and the immune system.56

The assumption of spatial homogeneity can also be
used to investigate the fate of anticancer drug delivered
within the whole organism, when the description
of the complex geometry would be too challenging
and would not increase the understanding of drug
fate, e.g., for pharmacological control based on
pharmacokinetics and pharmacodynamics.57

Continuum models are based on conservation
laws of physics and use deterministic partial
differential equations as a spatiotemporal modeling
framework to account for spatial heterogeneities
in both tumors and their microenvironment. One
particular interest of these models is their ability to
include mechanical effects on tumor growth, as for
breast58 and brain59 tumors described as an elastic
soft tissue. Tumors can also be represented by more
complex material with dissipative regimes generated
by cell reorganization.60 All these models have in
common the need for biophysical constitutive laws to
describe tumor mechanical properties.61

A simplified approach consists in describing
tumor growth by a mass balance equation where
mass changes occur in time and space due to
tumor cell proliferation and migration. This simplified
description by partial differential reaction-diffusion
equations (RDE) has been used for gliomas, in
combination with pretreatment MRIs to quantify
patient-specific cell proliferation and invasion rates
that are prognostically significant,62 and to simulate
surgical resection, radiotherapy, and chemotherapy.63

More sophisticated models including the effect of
vascularization and angiogenesis have also been
developed by using RDEs to investigate therapeutic
strategies64 or multiphase-mixture modeling to predict
drug response in breast cancer.65 In the multiphase-
mixture representation,66 tumor and host regions
are described as a mixture of multiple solid phases
(tumor and stroma cells, ECM, substrates, etc.) and
the interstitial fluid. This approach is flexible enough
to account for interaction forces generated by the
extracellular matrix67 and computationally efficient
to predict growth and morphological changes of
tumor spheroids that result from heterogeneities of
the microenvironment (Figure 3).68

Integration with Multiscale Modeling
Frameworks
One major criticism to the tissue level models is that
direct calibration of parameters at this scale is not pos-
sible in general and relies on fitting, which makes the
models mostly unreliable outside the range of param-
eters over which they have been calibrated. Other
important issues to consider are as follows: since
individual cell activity can ultimately be responsible
for generation of a macroscopic structure, such as a
mammary ductal tree or a breast tumor,69 how can
a tissue model be informed from single cell activity?
Vice-versa, since mechanical and other phenomena in
a tissue may lead, at the individual cell level, to phe-
notypic adaptation generated by physical forces such
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FIGURE 3 | Three-dimensional computer model predicts gross
morphologic features of a growing glioblastoma. Viable (light gray) and
necrotic (dark gray) tissue regions and vasculature (mature
blood-conducting vessels in red; new nonconducting vessels in blue) are
shown. The simulations reveal that the morphology is affected by
neovascularization, vasculature maturation, and vessel cooption.
(Reprinted with permission from Ref 68. Copyright 2007 Elsevier)

as hydrostatic pressure and shear stress,70 how can
we account for tissue-scale information in a cell-scale
model? These issues require the development of mul-
tiscale mathematical tools capable of bridging the gap
between scales and thus arguably the current gap in
oncology.

HYBRID-MULTISCALE MODELS

Because of the intrinsic multiscale nature of cancer,
a deeper understanding requires the development of
models that integrate and combine the phenomena
spanning the multiple scales involved. Hybrid
continuum-discrete implementations, which typically
seek to combine the best of the tissue (continuum) and
cellular (discrete) scale approaches while minimizing
their limitations, are a very promising modeling
approach. Although other definitions exist in the
field, the authors of Ref 53 proposed recently
to divide hybrid modeling into ‘composite hybrid’
and ‘adaptive hybrid’ approaches. Many published
methods belong to the first category and claim to
be multiscale because they are based on a hybrid
description of the tumor components, typically by
using a discrete representation of the various cell
populations and continuum fields to describe cell
substrates (e.g., nutrients, oxygen, and diffusible
factors). These models incorporate processes at
multiple scales but can hardly capture the nontrivial
interactions among scales that are responsible for the
growth of malignant tissue. The second category is

an emerging topic in the community of mathematical
and computational oncology and to our knowledge
is made of only two recent studies (highlighted
below) that provide an implementation of discrete and
continuum descriptions to simultaneously account for
single cell and tissue behaviors, and the interactions
between the two scales.

In a recent study,71,72 the authors treat
tumor’s necrotic and quiescent areas as a continuous
viscoelastic medium coupled to an ABM of tumor cells
located at the tumor periphery where proliferative
activity is artificially constrained to occur. The ABM
allows for the detailed description of single cells
by including their intercellular dynamics and is
coupled to the continuum description via a balance of
forces between single cells and the tumor (quiescent)
tissue. Another group developed a hybrid continuum-
discrete implementation that combines an ABM for
invasive tumor cells, which is directly coupled to
the continuum model used for the tumor bulk
by balancing transfers of mass and momentum
between the two representations.73–75 There is also
indirect coupling between the continuum and discrete
tumor representations through the (reaction-diffusion)
equations for cell substrates (e.g., oxygen, glucose)
and the ECM since both types of cell representation
take up nutrients and growth factors, and remodel
the extracellular matrix (Figure 4). Rules are posed to
describe the conditions for switching between discrete
and continuum representations without artificially
imposing where such transitions occur. Briefly,
discrete cells are released in hypoxic regions to model
the epithelial-to-mesenchymal transition, and discrete
cells are converted back to the continuum description
when their local population exceeds a threshold.

Although both examples above utilize coexisting
continuum and discrete tumor cell representations, the
overall approach is still phenomenological since the
functional relationships between the parameters and
variables used at the continuum level involve quanti-
ties that are not directly obtained from the cell scale.
Further, the rules for determining whether to con-
vert discrete cells to the continuum representation and
vice-versa are empiric. Therefore, it is our opinion that
the future modeling and computational challenges of
IPO should be concerned with developing a new class
of hybrid-multiscale models based on: (1) different
representations to describe the same quantity of inter-
est at different scales, e.g., using cell density at the
tissue scale and a number of discrete cell agents at
the cellular scale; (2) direct calibration/validation of
the cell-scale parameters and equations from individ-
ual measurements; and finally (3) rigorous upscaling
techniques to ‘close’ the continuum equations at the
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FIGURE 4 | Individual (discrete) palisading glial cells invasion into vascularized tissue. (a) Computer simulation from a hybrid-multiscale model
showing palisading cells escaping from the perinecrotic region (dark gray) by upregulating motility and downregulating adhesion and proliferation.
This phenotypic change is driven by hypoxia as the selective evolutionary force (see Discussion section). Cell migration occurs via chemotaxis and
haptotaxis in response to gradients of oxygen and extracellular matrix (ECM) concentration, respectively. Brown: conducting vessels; yellow:
nonconducting. (b) Background shows distribution of oxygen concentration (n = 1 in vascularized tissue and n < 1 in the tumor white/yellow
perinecrotic region). (Reprinted with permission from Ref 73. Copyright 2009 American Association for Cancer Research)

tissue scale, thus providing an accurate description of
the processes thereby.

The multiple-scale processes involved in tumor
angiogenesis also present mathematical and computa-
tional challenges even though vasculature formation
and remodeling involve a smaller ensemble of
(endothelial) cells compared to a whole 3D tumor.
As an example of angiogenesis modeling that bridges
molecular and multicellular phenomena, a novel
approach was introduced in Refs 76 and 77 that
reduced the number of phenomenological rules
needed. At the cellular scale, a cellular Potts model
was implemented to describe cellular growth, prolif-
eration, migration, apoptosis, and restructuring of
the extracellular matrix. This cellular model was
integrated with a partial differential equation model
describing the spatiotemporal evolution of VEGF and
with a Boolean network model of intracellular signal-
ing that considered VEGF specific receptors, integrin
receptors, and signaling initiated by cell–cell contact
(see also Further Reading section).

DISCUSSION: INTEGRATIVE PHYSICAL
ONCOLOGY

From our arguments, the reader may realize
that the development of predictive tumor growth
models involves major mathematical challenges. While
theoreticians and experimentalists have developed
numerous models to investigate tumor development
and growth and the underlying processes at various
scales, mathematical multiscale models have only

recently attempted to bridge the gap between the
various spatiotemporal scales in the quest for
predictive models of cancer. The heart of the matter
lies in the difficulty of deriving a mathematical
framework that provides the tools for a biophysically
sound approach that is also physically consistent
across the scales, a requirement of utmost importance
for IPO. Indeed, such a framework would allow,
through upscaling techniques, the use of directly
measurable quantities at the cellular scale to inform
the model parameters at the tissue scale, in principle
making multiscale models predictive because the data
used for calibration exist at a different scale (and are
of different nature) from those used for validation.

The field of IPO must address complex mathe-
matical issues to appropriately model tumor develop-
ment and better understand the emergence of macro-
scopic tumor characteristics as a result of molecular
and cellular phenomena. However, IPO may have
a broader impact by also producing novel biologi-
cal hypotheses on previously overlooked phenomena.
Biologists tend to consider the single cell as the Fun-
damental Tissue Unit (cFTU, where ‘c’ stands for
cell). This reductionistic approach has proven very
helpful in improving the current understanding of
subcellular and cellular processes that lead to normal
and pathologic tissue development. However, based
on the principles of evolution, it is well accepted that
progression in cancer is not only a consequence of
intrinsic instability of the cell genome but also the
result of extrinsic influences acting as selective forces
upon tumor cells. Therefore, we argue that there must
exist another fundamental tissue unit, herein named
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mFTU (where ‘m’ stands for microenvironmental).
The mFTU spans a length scale across which physical
transport of substrates (e.g., oxygen diffusion) occurs
and generates selective stress that ultimately leads
to the prevalence of one phenotype over another.
We believe that a typical order of magnitude of the
mFTU should be the length scale at which trans-
port phenomena lead to the establishment of tangible
concentration gradients of substrates (oxygen) and we
suggest considering at least 10 cell-lengths as a charac-
teristic mFTU length scale (i.e., an associated volume
of approximately 103 cells or 1003 µm3). This length
scale will of course change depending on the problem.

The need for an extended FTU to understand
the role of the environment on normal and malignant
tissue development is already recognized by the
biological community, e.g., Refs 78 and 79. However,
the complexity of coupled multifactorial processes is
prohibitive for a systematic experimental exploration
of the phenomena at the mFTU scale, a statement
exacerbated when one considers in vivo investigations,
for which costs, in terms of time and financial support,
as well as technical challenges, are strongly limiting
factors. Via multiscale mathematical methods, IPO
offers a framework that allows for a systematic
approach to investigate the mFTU that can also be
used to sharpen further experimental focus. Indeed,
IPO proposes a mathematical representation of the
system of interest (i.e., a very small tissue sample)
in which through parameter-sensitivity perturbation
studies: (1) the influence of each component can be
tested independently and experimentally validated
and (2) the behavior of the entire system can
be theoretically predicted to provide specific
directions for future experimental investigations.
Then, predictions at the tissue level would be the
result of the coupled nonlinear dynamics of a mosaic
of interacting mFTUs, the behavior of each of them
being understood as a single piece of the puzzle
and assembled via biophysical laws and boundary
conditions.

One example of the necessity of the mFTU as the
minimal scale of importance is cancer invasion, e.g.,
tumor fingering into surrounding host tissue, which
occurs due to the interplay of subcellular processes
leading, among other malfunctions, to dysregulated
cell proliferation and adhesion. As shown in Refs 68
and 80, these cell-scale (cFTU) effects are mediated
and driven by physical transport phenomena at the
mFTU scale, e.g., diffusion gradients of cell substrates
pointing away from the tumor bulk, and modulate the
features of the invasion process; but cFTU effects alone
would not lead to organized and effective (clinically
relevant) invasion of the surrounding stroma, but

rather to trivial random walks of cells in the
neighborhood of the tumor/stroma interface with
no average direction.68 A second example is tumor
resistance to chemotherapy. A traditional approach
that focuses only on drug treatment failure at the
molecular and cellular (cFTU) levels typically and
significantly underestimates resistance in vivo because
it cannot account for processes at larger scales such
as the phenomenon of ‘diffusion barriers’ associated
with limited drug and cell substrate penetration into
the bulk of a tumor.81 By extending the scale of
investigation to the mFTU and considering drug
(and oxygen) transport by diffusion through the
tissue, it has been shown that chemo-resistance is
significantly driven by the environment and often to
an extent larger than the intrinsic resistance of single
cells,65 thus leading to in vivo/in vitro IC50 ratios
significantly larger than one.82 Our final example
is the investigation of stem cell niches and their
role in breast cancer development. From a purely
biological point of view, the functional definition of
a niche is a set of microenvironmental components
(e.g., ECM, signaling molecules, blood vessels) and
biological processes (e.g., juxtacrine and paracrine
cell signaling) that regulate stem cell behavior. From
a physical point of view, we suggest reconsidering the
definition of niche within the context of mFTU, so that
regulatory effects of the physical transport processes
of oxygen and other species on stem cell behavior may
be properly accounted for.

A clinical implication of the mFTU concept in
the context of IPO lies in the definition and use of
histopathologic criteria to diagnose and classify (brain
and breast) tumors. These criteria are based on the
analysis of small parts of tumor specimens (biopsies)
and aim to help pathologists formulate prognosis of
tumor progression, in other words, to extrapolate
the spatiotemporal behavior of the whole tumor
from a small tissue sample. From a physical point
of view, as we emphasize above, the macroscopic
tumor features result from the complex dynamics
at the mFTU level, which suggests a minimal size
necessary for biopsies to capture the physical transport
phenomena. Multiscale modeling would allow for
the construction of a ‘functional mapping’ from a
range of histopathological data of phenotypic and
stromal properties into predicted macroscopic tumor
features of translational relevance such as growth
rate, fingering growth rate, drug response, etc., thus
producing a new set of mathematical pathologic
criteria. A simplified example of such an approach is
the recent work by Macklin,50 in which the underlying
physics of transport across the mFTU accurately
connects immunohistopathology measurements from
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FIGURE 5 | Validation of model predictions against pathology-determined ductal carcinoma in situ (DCIS) tumor sizes. Surgical tumor size versus
parameter A that is related to the ratio of tumor apoptotic and mitotic indices in the breast ducts. The dotted curve represents the theoretical
predictions by a continuum model. Symbols are DCIS tumor size measurements from individual patient histopathology and are subclassified by their
grade. The shaded region indicates the standard deviation in the measurement of A in individual duct. (Reprinted with permission from Ref 50.
Copyright 2010 Cambridge University Press)

biopsies to patient-specific translational quantities
such as the surgical volume of breast tumors
(Figure 5). In doing so, the authors demonstrated that
the size of breast tumors does not correlate with grade,
but rather with a specific mathematical functional of
both mitotic and apoptotic indices in the breast ducts.
Hence, we claim that IPO may have a major impact

via the identification of robust predictors of tumor
progression based on molecular-scale data,73 which
might not require multiple time-point measurements
from patients, thus helping bridge the gap discussed
at the beginning of this paper through feasible incor-
poration within the current clinical practice. This is
the foundation of mathematical pathology.
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