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Abstract In this article, we present a new multiscale mathematical model for solid

tumour growth which couples an improved model of tumour invasion with a model

of tumour-induced angiogenesis. We perform nonlinear simulations of the multi-scale

model that demonstrate the importance of the coupling between the development and

remodelling of the vascular network, the blood flow through the network and the tu-

mour progression. Consistent with clinical observations, the hydrostatic stress gener-

ated by tumour cell proliferation shuts down large portions of the vascular network

dramatically affecting the flow, the subsequent network remodelling, the delivery of

nutrients to the tumour and the subsequent tumour progression. In addition, extra-

cellular matrix degradation by tumour cells is seen to have a dramatic affect on both

the development of the vascular network and the growth response of the tumour. In
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Fig. 1 left: A schematic diagram of the basic network model of tumour-induced angiogenesis.
The P1, P2, P3, P4 denote the probabilities of the sprout EC moving in the coordinate di-
rections. P0 denotes the probability of remaining stationary. Reprinted with permission from
[18]. right: A schematic representation of the neo-vessels superimposed on the computational
grid used for the flow calculation (after [18]).

particular, the newly developing vessels tend to encapsulate, rather than penetrate,

the tumour and are thus less effective in delivering nutrients.

Keywords solid tumour · avascular growth · angiogenesis · vascular growth ·
multiscale mathematical model

1 Further Details on the Network Model

1.1 Further Schematics

Schematic figures of the basic vascular network model and the underlying computa-

tional grid for the flow calculation are given in Fig. 1.

1.2 Further Blood Viscosity Details

In Eq. 22 in Section 2.2.1, the apparent viscosity is given by

µapparent = µplasma · µrel,

µrel(R, h) = (1)

µrel(R, h) =

(
1 + (µ0.45 − 1) f

(
h,

R

R∗
)(

2 R
R∗

2 R
R∗ − 1.1

)2
)(

2 R
R∗

2 R
R∗ − 1.1

)2

(2)

where µplasma is the plasma viscosity, µrel is the relative viscosity, µ0.45 is the (nondi-

mensional) viscosity corresponding to the normal value of the discharge haematocrit

(i.e., h = HD = 0.45), R is the dimensional vessel radius (in µm), R∗ is a radius

scale factor (taken to be equal to 1 µm), and f(h, R) is a modulating function of the

haematocrit and vessel radius. These effects are modelled by:
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WSS / τmax

[TAF] / TAFmax

[0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1.0]
[0.0,0.3) 0.00 0.00 0.00 0.00 0.00
[0.3,0.5) 0.00 0.02 0.04 0.06 0.08
[0.5,0.7) 0.00 0.03 0.06 0.09 0.12
[0.7,0.8) 0.00 0.04 0.08 0.12 0.16
[0.8,1.0] 0.00 0.10 0.20 0.30 0.40

Table 1 Vessel branching probabilities according to the local TAF (T ) concentration and to
the magnitude of the local wall shear stress (τw). TAFmax (Tmax) is the maximum TAF
concentration and τmax = 5 Pa (50 dynes/cm2), the maximum shear stress derived from
preliminary flow simulations.

µ0.45 = 6e−0.17R/R∗ − 2.44e−0.06(2R/R∗)0.645
+ 3.2,

f
(
h,

R

R∗
)

=
(1− h)C(R/R∗) − 1(
1−HD

)C(R/R∗) − 1
,

C
(

R

R∗
)

=
(
e−1.5×10−7R/R∗ + 0.8

)(
1

1 + 10−23 (2R/R∗)12
− 1

)

+
1

1 + 10−23 (2R/R∗)12
. (3)

The apparent blood viscosity (e.g. Eq. 22 in Section 2.2.2 in the main text) generally

increases with decreasing capillary radius, although the precise relationship is nonlinear

since it is actually haematocrit-dependent.

1.3 Further Wall Shear Stress Details

The combined effects of the local wall shear stress and TAF concentration upon vessel

branching probability have been implemented in the model as described in Table 1

in the supplement. In the absence of quantitative experimental data, the probabilities

chosen for the vessel branching process have been defined on a qualitative basis and

reflect the combined influence of the wall shear stress (WSS) and local TAF concen-

tration. High values of WSS in tandem with high local TAF concentrations lead to

a higher branching probability, whilst lower values of one or both of WSS and TAF

concentration lead to lower branching probability. For each range of WSS (linearly dis-

tributed in [0,1]), the corresponding TAF probability profile has been obtained via a

linear scaling of the values reported in [19,28,29]. As mentioned above, in the absence

of WSS, TAF-dependent sprout tip branching is the only means by which a migrating

vessel can bifurcate. Sprout tip branching is performed using the algorithm developed

by Anderson and Chaplain [2] and the corresponding tip branching probabilities are

shown in Table 2.

2 Parameters and Nondimensionalizations used in the Simulations

In Table 3, we summarize the nondimensional variables used in the simulations. We

give nondimensional parameters and their values in Tables 4-7.
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TAF Concentration Sprout Tip Branching Probability
[0, 0.3] 0.0

(0.3, 0.5] 0.2
(0.5, 0.7] 0.3
(0.7, 0.8] 0.4
(0.8, 1.0] 1.0

Table 2 Sprout tip branching probabilities as a function of the local TAF concentration

Biological Quantity Nondimensional
Variable

Scaled By

Oxygen concentration σ
σ∗, the oxygen level in well-oxygenated
tissue (assumed to be the same as the
oxygen level in the blood vessels)

Proliferation-
induced biome-
chanical pressure

P
λM `2/µ∗, where mu∗ is a characteristic
mobility value and λM is the mitosis
rate

Tumour-secreted
angiogenic growth
factor (TAF)

T
T ∗, the concentration of TAF secreted
by tumour cells

Matrix degrading
enzyme (MDE)

M
M∗, the concentration of MDE secreted
by tumour cells

Extracellular ma-
trix (ECM)

E
E∗, the concentration of ECM secreted
by tumour cells

Original extracellu-
lar matrix

E0
E∗, the concentration of ECM secreted
by tumour cells

Endothelial cell
(EC) density

n n∗, a characteristic density of ECs

Pre-existing blood
vessel density

Bpre

B∗pre, a characteristic density of of pre-

existing vessels (e.g., value at the initial
time)

Table 3 The variables in the tumour invasion model and their nondimensionalisation.

3 Details of the stimuli that affect the vessel radius in the adaptive

dynamic tumour-induced angiogenesis model

Wall shear stress – Many studies show that vessels adapt their radius in order to

maintain a constant level of wall shear stress (e.g., [26,23,24,4]). Hence vessel radius

tends to increase with increasing wall shear stress, whilst wall shear stress decreases

with increasing radius. The non-dimensional wall shear stress stimulus can be described

by a logarithmic law as

Swss = log
((

τw + τref
)

/τ∗w
)

, (4)

where τw =
4µrel(R,h)

πR3

∣∣Q̇∣∣ is the actual wall shear stress in a vessel segment, Q̇ is

the flow rate in the vessel under consideration, τref is a constant included to avoid

singular behaviour at low shear rates, and τ∗w is a wall shear stress scale factor [23].

Dimensional stresses are in dynes/cm2.The dimensional wall shear stress calculated in

the parent vessel of our computational model is of the order 4 Pa (40 dynes/cm2) and

capillary values are less than 2 Pa (20 dynes/cm2), in agreement with those measured

experimentally in the dog by Kamiya et al. [11]. Adaptation in response to the wall

shear stress stimulus alone tends to reinforce a single path in the network composed of

a few well-established fully dilated vessels–corresponding to the main flowing backbone
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Biological
Quantity

Nondimensional
Parameter

Scaled By Value used in
simulations

Uptake rate of oxy-
gen in proliferating
tumour region

λσ λ∗σ, the characteris-
tic rate of oxygen
uptake in the prolif-
erating tumour re-
gion

1

Uptake rate of oxy-
gen in host mi-
croenvironment

λtissue λ∗σ 0.25

Uptake rate oxygen
in quiescent (hy-
poxic) tumour re-
gion

λH λ∗σ 0.5

Decay rate of oxy-
gen in necrotic tu-
mour region

λN λ∗σ 0.25

Rate of blood-
tissue oxygen
transfer (ex-
travasation) from
pre-existing vessels

λ
σ
pre λ∗σ 0.25

Rate of blood-
tissue oxygen
transfer (ex-
travasation) from
neo-vessels

λ
σ
neo λ∗σ 20

Lower cutoff of
original ECM, used
in uptake in host
microenvironment

E
right cutoff
0 E∗, the concentra-

tion of ECM se-
creted by tumour
cells

1.0

Upper cutoff of
original ECM, used
in uptake in host
microenvironment

Eleft cutoff
0 E∗ 0.625

Characteristic
value of discharge
haematocrit

HD Already nondimen-
sional

0.45

Minimum value of
haematocrit needed
for extravasation

hmin Already nondimen-
sional

0.05

Characteristic di-
mensional value
of pressure in the
neo-vessels (Eq. 6)

Pvessel ——– 5000 Pa

Apoptosis rate A λm, the mitosis
rate

0

Scaling factor for
hydrostatic (me-
chanical) pressure
cutoff (Eq. 6)

P scale 0.33

Necrosis rate GN λm 0.3
Tumour aggres-
siveness (adhesion)
rate

G λm 40

Minimum hapto-
taxis rate

χE,min χ∗EE∗/(`2λm),
where ` is the
length scale

0

Maximum hapto-
taxis rate

χE,max χ∗EE∗/(`2λm) 0.25

Maximum value of
ECM used in hap-
totaxis coefficient
(Eq. 15)

E
χ

max cutoff E∗ 0.1

Minimum value of
ECM used in hap-
totaxis coefficient
(Eq. 15)

E
χ

min cutoff E∗ 0.9

Table 4 Values of the parameters for the tumour invasion model–Eqs. 1-20. This table is
continued in Table 5.
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Biological
Quantity
(continued)

Nondimensional
Parameter
(continued)

Scaled By
(continued)

Value used in
simulations
(continued)

Minimum tu-
mour mobility
(response to hydro-
static/mechanical
pressure)

µmin µ∗, a characteristic
value of mobility

1.0

Maximum tu-
mour mobility
(response to hydro-
static/mechanical
pressure)

µmax µ∗ 4.0

Minimum value
of ECM used in
mobility coefficient
(Eq. 16)

Eµ

min cutoff
E∗ 0

Maximum value
of ECM used in
mobility coefficient
(Eq. 16)

Eµ

max cutoff
E∗ 1.0

Oxygen diffusion
coefficient

Dσ D∗σ, a characteristic
dimensional oxygen
diffusion coefficient

1.0

MDE diffusion co-
efficient

DM `2λm 1.0

Production rate of
MDE by tumour
cells

λ
M
prod. λm 100

Natural decay of
MDE

λ
M
decay λm 10

Production rate of
MDE by EC sprout
tips

λ
M
spr. prod. λmM∗ 1.0

Rate of degradation
of ECM by MDE

λ
E
degradation λm/M∗ 0.01 (Figs. 2-9)

1.0 (Figs. 10-16)

Rate of production
of ECM by tumour
cells

λ
E
prod. λm

0.1 (Figs. 2-9)
2.72 (Figs. 10-16)

Rate of production
of ECM by EC
sprout tips

λ
E
spr. prod. λm/E∗ 0.1

Rate of degrada-
tion of pre-existing
blood vessels

λ
B
degradation λm/M∗ 0.02 (Figs. 2-9)

1.0 (Figs. 10-16)

TAF diffusion coef-
ficient

DT D∗σ 1.0

Rate of TAF pro-
duction by hypoxic
tumour cells

λ
T
prod. λ∗σ 100

Rate of natural de-
cay of TAF

λ
T
decay λ∗σ 0.01

Rate of binding of
TAF by EC sprout
tips

λ
T
binding λ∗σ 0.025

Table 5 Values of the parameters for the tumour invasion model (continued)–Eqs. 1-20. This
table is continued from Table 4.
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Biological
quantity

Nondimensional
Parameter

Scaled by Value used in
simulations

Random motion of
EC

D `2λm 3.5× 10−4

Chemotactic re-
sponse of EC
sprout tip

χT
sprout `2λm/T ∗ 0.38

Decrease in chemo-
tactic sensitivity

δ 1/T ∗ 0.6

Haptotactic re-
sponse of EC
sprout tip

χE
sprout `2λm/E∗ 0.16

Response rate of
neo-vessel radius to
intravascular pres-
sure

kp kw, the response
rate of the neo-
vessel radius to wall
shear stress

0.1

Response rate of
neo-vessel radius to
metabolic stimulus

km kw 0.07

Natural shrink-
ing tendency of
neo-vessel radius

ks Already nondimen-
sional

0.35

Table 6 Values of the non-dimensional parameters for the angiogenesis model–Eqs. 21-25.

Biological Quantity Dimensional
Parameter

Value used in simulations

Dimensional neo-vascular ra-
dius scale factor Eq. 22

R∗ 1× 10−6 m

Dimensional wall shear stress
scale factor

τ∗w 0.1 Pa

Dimensional wall shear stress
regularization factor

τref 0.0103 Pa

Dimensional intravascular
pressure stress scale factor

τ∗e 0.1 Pa

Dimensional natural shrink-
ing tendency scale factor

τ∗s 1 Pa

Dimensional intravascular
pressure scale factor

P ∗
vessel

103 Pa

Flow rate in parent vessel Q̇ref 1.909× 10−11 m3/s
Threshold minimum neo-
vessel radius for pressure
cutoff (Eq. 25)

Rmin 6× 10−6 m

Table 7 Values of the dimensional parameters for the angiogenesis model–Eqs. 21-25.

of the vasculature–whilst simultaneously eliminating the low-flow paths. However, the

resulting network is “unstable” in the sense that there is no consistent balance for the

radius and flow distribution achieved when Swss is considered in isolation.

Intravascular pressure – Intravascular pressure is another key stimulus for vascu-

lar adaptation. Pries et al. have experimentally observed on the rat mesentery the

dependence of the magnitude of the wall shear stress with the local intravascular pres-

sure (Pvessel) [25]. They proposed a parametric description of their experimental data,

which exhibits a sigmoidal increase of the wall shear stress with increasing pressure

through the following. The sensitivity of the corresponding (non-dimensionall) stimulus

to intravascular pressure is then described by:
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Sp = kp log
(
τe

(
Pvessel/P ∗vessel

)
/τ∗e

)
, (5)

where τe

(
Pvessel/P ∗vessel

)
/τ∗e = 103−860exp

(
−5000

[
log

(
log Pvessel/P ∗vessel

)]5.4
)
,

τ∗e is an intravascular pressure stress scale factor (note that τ∗e itself is not needed for

the simulation as the above formula is used), P ∗vessel vessel P is a pressure scale factor,

and kp is rate of response of the radius to the pressure stimulus.

Metabolic haematocrit-related stimulus – The metabolic stimulus effectively sta-

bilises the adapting network by stimulating vessel growth in areas of the vascular bed

exhibiting low flow. The non-dimensional stimulus is once again described by a loga-

rithmic law given by:

Sm = km log

(
Q̇ref
Q̇h

+ 1

)
, (6)

where km is a constant characterizing the relative intensity of the metabolic stimulus,

and Q̇ref is the flow rate in the parent vessel.

Natrual shrinking tendency – The natural reaction of the basal lamina is thought

to counter any increase in vessel diameter and can be modelled by [26]:

Ss = ks log
(
τs/τ∗s

)
, (7)

where τs = exp
(
−ks/ks

)
, ks is a constant and τ∗s is a shrinking tendency scale factor

(taken to be τ∗s = 1 Pa). Note that since τ∗s = 1 Pa, ks no longer appears in Eq. 24

and instead we obtain Ss = −ks.

To summarise, the conditions for vessel branching in the DATIA model are as

follows: (i) the likelihood of a vessel branching increases with both the local TAF

concentration and the magnitude of the shear stress affecting the vessel wall; (ii) the

vessel must reach a certain level of maturation before it is able to branch, although

branching cannot occur once a basal lamina has formed around a vessel [5,3]. In the

simulations presented here, however, there is no upper limit on the age of vessels

that are allowed to branch. This models the case in which the continued tumour-

induced angiogenic response prevents the formation of basal lamina. This effect will be

considered in a future work.

4 Numerical techniques for tumour invasion model

The ghost cell method – The reaction-diffusion equations describing nutrient trans-

port, the pressure equilibration, the matrix degrading enzyme evolution and tumour

angiogenic factor distribution may be written generically in the form:

∂v

∂τ
= ∇ · (D(x, v)∇v) + fR(x, v)v + fS(x, v), (8)

where v = σ, P , M or T and τ is either a pseudo-time variable (in the case of the

elliptic/quasi-steady equations for nutrient, pressure and angiogenic factor) or is the
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Fig. 2 Representing an ellipse as the zero contour of a level set function φ.

real time (in the case of the MDE equation). Note that without loss of generality, fR

is assumed to be non-positive.

We discretize Eq. 8 in (pseudo/real) time using the backward Euler method and lag

the dependence of the diffusion coefficient D, reaction fR and source fS terms upon

v. Away from interfaces, Eq. 8 is discretized in space using a centered finite difference

scheme. For quantities that are smooth (i.e. σ, M , E or T ) centered differences are

used throughout the domain. For the pressure, however, the jump conditions in Eqs.

11 and 12 need to be correctly incorporated and the difference stencils are modified

near Σ accordingly [13,14,16]. Note that we assume that there are no jumps across

ΣN and thus no stencil modification is needed near ΣN .

The stencil is modified in the following way. Whenever the boundary Σ intersects

the computational stencil, we replace points that are outside of the boundary with

“ghost” points (denoted by hats) that are extrapolated from within the region where

we also use the jump boundary condition, i.e.

P` − Pr = − 1

G
sgn(φ)κ (xΣ) (9)

where the −sgn(φ) ensures the jump condition is applied in the proper direction and is

discretized using the approach in [30]. See Fig. 3. In Eq. 9, the curvature κ is accurately

obtained from the level-set function f (i.e., κ = ∇ · (∇φ/ |∇φ|)) even for complex

interface morphologies using a geometry aware discretization we recently developed

[14,16]. Further, Eq. 9 introduces non-grid points Pr and P` into the discretization.

However, taking into account the jump condition on the normal derivative in Eq. 12, one

obtains two equations for the two variables P` and Pr allowing them to be eliminated

from the discretization. The normal vector n = ∇φ/ |∇φ| is also discretized using a

geometry-aware method [16].

The normal jump in Eq. 12 is discretized by taking decomposing the normal deriva-

tive into components in the grid (u`, ur) and off-grid (diagonal, v`, vr) directions (see

Fig. 4) that involve p` and pr and carefully matching extrapolations from inside and

outside of the tumour domain Ω. This approach does not smear tangential derivatives-

a problem that plagued earlier implementations of ghost cell methods. Indeed, this

algorithm has tested better than 1.5-order accurate [16]; in contrast, previous ghost

fluid and ghost cell methods (e.g., [12]) smear jumps in the tangential derivative and

either fail to converge or are at best very low (sub-0.3) order accurate.
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Fig. 3 Ghost cell extrapolation from one region into another.

Fig. 4 Stencil for discretizing normal derivative jump conditions across a boundary.

The fully discrete version of Eq. 8 is solved using a nonlinear adaptive Gauss-Seidel-

type iterative method (NAGSI). Because of the lagged form of the time discretization,

there is no need to solve a large linear system at each iteration step. Instead, there is

only a local solve which can be performed analytically. In the case of the time-dependent

MDE equation, this is sufficient to advance to the next time step. For the nutrient,

pressure and tumour angiogenic factor, however, Eq. 8 must be solved to steady state

(within an error tolerance) and thus further iterations are necessary. To advance to

steady state efficiently, we take advantage of the fact that as the solution converges,

the numerical solution tends to change most on a small fraction of the computational

nodes. Therefore, we can select computational nodes where the numerical solution is

changing most rapidly and update only those nodes. This algorithm is very efficient

and adaptivity typically yields about a 50% reduction in computational time [16].

The level set method – Level set methods were first developed by Osher and Sethian

[21] and have been used to study the evolution of moving, complex surfaces (see the

books [27,20] and the references therein). Level set methods have been previously used

in the context of tumour growth by Macklin & Lowengrub [13–16], Zheng et al. [32],

and Hogea et al. [8].
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In the level set approach, instead of explicitly tracking the position of interfaces Σ

and ΣN and manually handling topology changes, the level set function is updated by

solving a Hamilton-Jacobi partial differential equation, which automatically accounts

for the interface motion and possible morphological changes of the interface.

The idea is as follows. Let V be the outward normal velocity of the interface Σ (e.g.

see Eq. 13) and let Vextension be an extension of V off of the tumour boundary Σ such

that Vextension = V on Σ. One possibility is to use u, from Eq. 7, as the extension

of V off the interface. This is actually not done, as explained below. To update the

position of the boundary Σ, we solve the Hamilton-Jacobi equation

∂φ

∂t
+ Vextension |∇φ| = 0. (10)

Note that the position of the necrotic/viable interface ΣN is similarly obtained

by evolving φN with an extension VN,extension of the necrotic velocity VN off the

boundary ΣN . We obtain the extension velocities using a bilinear extrapolation tech-

nique first presented in [13] that is constant in the normal direction to the interface.

This can be thought of as a higher order version of the fast marching method (e.g. [1,

31]). An advantage of taking Vextension to be constant in the normal direction is that

distance functions are then preserved by Eq. 10. If instead Vextension = u, this would

not be the case. Even though theoretically ∂Vextension/∂n = 0, it is still helpful to

prevent accumulation of numerical error by reinitializing φ periodically to be a distance

function by solving

∂φ

∂τ
= sgn

(
φ0

)
(1− |∇φ|) (11)

to steady state, where τ is pseudo-time and φ0 is the original level-set function prior to

reinitialization. Finally, Eqs. 10 and 11 are discretized in time using first order Euler

method and a third-order total variation-diminishing Runge-Kutta method (TVD-RK)

[6,7], respectively. The former is used to reduce computational cost. In space, the |∇φ|
is discretized using the fifth-order weighted essentially non-oscillatory (WENO) method

[10,9].

Lastly, we update Eqs. 10 and 11 only near the interface using the narrow band/local

level set technique [17,22] with a band size of 20∆x.

For further details on the ghost cell/level-set algorithm, the reader is referred to

[13,14,16].

5 Additional details of the invasion model: The interpolating functions

Several interpolation functions are used in the tumour invasion model. These are given

below. In the oxygen uptake equation (2), the interpolation function pσ (E0) is defined

by

pσ (E0) =





0 E0 < Eleft cutoff
0

p (E0) Eleft cutoff
0 ≤ E0 ≤ E

right cutoff
0

0 E0 > E
right cutoff
0

,
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and p (E0) is a cubic polynomial satisfying:

p
(
Eleft cutoff

0

)
= 0 , p′

(
Eleft cutoff

0

)
= 0

p
(
E

right cutoff
0

)
= 1 , p′

(
E

right cutoff
0

)
= 0.

In Eq. 2, qσ(σ) is a quartic polynomial chosen to satisfy

qσ(σH) = λV , q′σ(σH) = 0,

qσ

(
σH+σN

2

)
= λH ,

qσ(σN ) = λN , q′σ(σN ) = 0.

In Eq. 5, pcutoff is a cubic polynomial chosen to satisfy:

pcutoff(0) = 0 , p′cutoff(0) = 0,

pcutoff(1) = 1 , p′cutoff(1) = 0.

Both the haptotactic sensitivity and the mobility of the tumour cells involve inter-

polating functions. In Eq. 15, pχ(E) is a quartic polynomial chosen to satisfy:

pχ

(
E

χ

min cutoff

)
= χE

min , p′χ
(
E

χ

min cutoff

)

pχ

(
E

χ

min cutoff
+E

χ

max cutoff
2

)
= χE

max ,

pχ

(
E

χ

max cutoff

)
= χE

min , p′χ
(
E

χ

max cutoff

)
= 0.

Finally, in Eq. 16, the function pµ(E) is the cubic polynomial:

pµ

(
E

µ

min cutoff

)
= µmax , p′µ

(
E

µ

min cutoff

)
= 0

pµ

(
E

µ

max cutoff

)
= µmin , p′µ

(
E

µ

max cutoff

)
= 0.

References

1. Adalsteinsson, D., Sethian, J.A.: The Fast Construction of Extension Velocities in Level
Set Methods. J. Comput. Phys. 148(1), 2–22 (1999). DOI 10.1006/jcph.1998.6090

2. Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models
of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–900 (1998). DOI
10.1006/bulm.1998.0042

3. Benjamin, L.E., Hemo, I., Keshet, E.: A plasticity window for blood vessel remodelling
is defined by pericyte coverage of the preformed endothelial network and is regulated by
pdgf-β and vegf. Development (Camb.) 125, 1591–8 (1998)

4. Fung, Y.C.: Biomechanics. Springer, New York (1993)
5. Gee, M.S., Procopio, W.N., Makonnen, S., Feldman, M.D., Yeilding, N.M., Lee, M.F.: Tu-

mor vessel development and maturation impose limits on the effectiveness of anti-vascular
therapy. Am. J. Pathol. 16, 183–93 (2003)

6. Gottlieb, S., Shu, C.W.: Total Variation Diminishing Runge-Kutta Schemes. Math. Comp.
67(221), 73–85 (1997). DOI 10.1090/S0025-5718-98-00913-2

7. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong Stability-Preserving High-Order
Time Discretization Methods. SIAM Review 43(1), 89–112 (2001). DOI
10.1137/S003614450036757X

8. Hogea, C.S., Murray, B.T., Sethian, J.A.: Simulating complex tumor dynamics from avas-
cular to vascular growth using a general level-set method. J. Math. Biol. 53(1), 86–134
(2006). DOI 10.1007/s00285-006-0378-2

9. Jiang, G.S., Peng, D.: Weighted ENO Schemes for Hamilton-Jacobi Equations. SIAM J.
Sci. Comput. 21(6), 2126–2143 (2000). DOI 10.1137/S106482759732455X



13

10. Jiang, G.S., Shu, C.W.: Efficient Implementation of Weighted ENO Schemes. J. Comput.
Phys. 126(2), 202–228 (1996). DOI 10.1006/jcph.1996.0130

11. Kamiya, A., Bukhari, R., Togawa, T.: Adaptive regulation of wall shear stress optimizing
vasular tree function. Bull. Math. Biol. 46, 127–37 (1984)

12. Liu, X.D., Fedkiw, R., Kang, M.: A Boundary Condition Capturing Method for Pois-
son’s Equation on Irregular Domains. J. Comput. Phys. 160(1), 151–178 (2000). DOI
10.1006/jcph.2000.6444

13. Macklin, P., Lowengrub, J.S.: Evolving interfaces via gradients of geometry-dependent
interior Poisson problems: application to tumor growth. J. Comput. Phys. 203(1), 191–
220 (2005). DOI 10.1016/j.jcp.2004.08.010

14. Macklin, P., Lowengrub, J.S.: An improved geometry-aware curvature discretization for
level set methods: application to tumor growth. J. Comput. Phys. 215(2), 392–401 (2006).
DOI 10.1016/j.jcp.2005.11.016

15. Macklin, P., Lowengrub, J.S.: Nonlinear simulation of the effect of microenvironment on
tumor growth. J. Theor. Biol. 245(4), 677–704 (2007). DOI 10.1016/j.jtbi.2006.12.004

16. Macklin, P., Lowengrub, J.S.: A new ghost cell/level set method for moving boundary
problems: Application to tumor growth. J. Sci. Comput. (2008). DOI 10.1007/s10915-
008-9190-z. (in press)

17. Malladi, R., Sethian, J.A., Vemuri, B.C.: A fast level set based algorithm for topology-
independent shape modeling. J. Math. Imaging Vision 6(2-3), 269–289 (1996). DOI
10.1007/BF00119843

18. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J.: Mathematical modelling of dy-
namic adaptive tumour-induced angiogenesis: Clinical implications and therapeutic tar-
geting strategies. J. Theor. Biol. 241(3), 564–589 (2006). DOI 10.1016/j.jtbi.2005.12.022

19. McDougall, S.R., Anderson, A.R.A., Chaplain, M.A.J., Sherratt, J.A.: Mathematical mod-
elling of flow through vascular networks: implications for tumour-induced angiogenesis and
chemotherapy strategies. Bull. Math. Biol. 64(4), 673–702 (2002)

20. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New
York, NY (2002)

21. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988). DOI
10.1016/0021-9991(88)90002-2

22. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-Based fast local level set
method. J. Comput. Phys. 155(2), 410–438 (1999). DOI 10.1006/jcph.1999.6345

23. Pries, A.R., Reglin, B., Secomb, T.W.: Structural adaptation of microvascular networks:
functional roles of adaptive responses. Am. J. Physiol. Heart Circ. Physiol. 281, H101525
(2001)

24. Pries, A.R., Reglin, B., Secomb, T.W.: Structural adaptation of vascular networks: role of
the pressure response. Hypertension 38, 14769 (2001)

25. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Design principles of vascular beds. Circulation
Res. 77, 1017–1023 (1995)

26. Pries, A.R., Secomb, T.W., Gaehtgens, P.: Structural adaptation and stability of mi-
crovascular netwoks: theory and simulation. Am. J. Physiol. Heart Circ. Physiol. 275(44),
H34960 (1998)

27. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University
Press, New York, NY (1999)
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