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Abstract In this paper, we present a ghost cell/level set method for the evo-

lution of interfaces whose normal velocity depend upon the solutions of linear

and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent

boundary conditions. Our technique includes a ghost cell method that accurately

discretizes normal derivative jump boundary conditions without smearing jumps

in the tangential derivative; a new iterative method for solving linear and nonlin-

ear quasi-steady reaction-diffusion equations; an adaptive discretization to com-

pute the curvature and normal vectors; and a new discrete approximation to the

Heaviside function. We present numerical examples that demonstrate better than

1.5-order convergence for problems where traditional ghost cell methods either

fail to converge or attain at best sub-linear accuracy. We apply our techniques

to a model of tumor growth in complex, heterogeneous tissues that consists of

a nonlinear nutrient equation and a pressure equation with geometry-dependent

jump boundary conditions. We simulate the growth of glioblastoma (an aggres-

sive brain tumor) into a large, 1 cm square of brain tissue that includes heteroge-

neous nutrient delivery and varied biomechanical characteristics (white matter,

gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies

that are highly dependent upon the variations of the tissue characteristics–an

effect observed in real tumor growth.
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1 Introduction

The algorithms we develop in this paper are motivated by our interest in modeling

tumor growth in complex, heterogeneous tissues. Cancer is a fundamental scien-

tific and societal problem, and in the past several decades, intensive research has

been focused on understanding the complexity of cancer progression, developing

new therapies, and formulating optimal treatment protocols. While much work

has been done in the mathematical community on tumor modeling (e.g., see the

reviews [4,9,8,11,48,47]), to date there has been little work in modeling tumor

growth in realistic, heterogeneous tissues on large spatial scales. The methods

we present in this paper will provide the foundation for a biologically-detailed

millimeter-to-centimeter-scale model of tumor growth in heterogeneous tissues

with realistic features (e.g., mechanically soft and hard regions, bone, and inho-

mogeneous nutrient delivery) [6,35,37]. However, the methods described in this

paper have applications beyond the tumor growth context and can be applied to

general systems of linear and nonlinear quasi-steady reaction-diffusion problems

on moving, heterogeneous domains.

In previous work [36,38–40], we investigated simpler models of tumor growth

using a level set/ghost fluid method that we developed in [36] and [38]; our tech-

nique tested second-order accurate when applied to interior problems, including

the tumor growth model. (Hereafter, we refer to ghost fluid methods as ghost

cell methods to emphasize that they have applications beyond fluid mechanics.)

In [39], we improved the accuracy and robustness of level set-based curvature

calculations in cases where two interfaces are in close contact, and we extended

our approach to the two-sided problem in [40]. However, this work still smeared

any jumps in the tangential derivative across the interface, assumed homogeneous

tumor microenvironments (with piecewise constant biophysical parameters) and

was not capable of simulating growth into complex tissue structures. We note

that Zheng et al. [57] and Hogea et al. [28] have also used level set methods

to study tumor growth and angiogenesis, but this work also assumed homoge-

neous tissues and used lower-order accurate level set methods. Frieboes et al. [19,

18] and Wise et al. [54] have begun studying 3D tumor growth using a diffuse

interface approach, while others have begun studying the tumor problem using

multiphase mixture models (e.g., see [5], [10], and [12]). Still others use discrete

models, such as cellular automata and agents (e.g., see [1], [7], and [11] for some

recent examples).

In this paper, we present a ghost cell/level set method for the evolution of

interfaces whose normal velocity depend upon the solutions of linear and nonlin-
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ear quasi-steady reaction-diffusion equations with curvature-dependent bound-

ary conditions. We introduce a new normal derivative jump discretization for

the ghost cell method that accurately discretizes the jump without numerically

smearing any tangential derivative jump. In this approach, the normal jump is

written as a combination of two grid-aligned jumps that are easier to compute.

This addresses a longstanding problem with the ghost cell method, and in nu-

merical testing, our extended ghost cell method achieves better than 1.5-order

accuracy in cases where the traditional normal derivative jump stencil either fails

to converge or attains sub-first-order accuracy, regardless of mesh refinement. We

also present a new adaptive normal vector calculation that allows us to robustly

calculate appropriate normal vectors even in the presence of multiple, non-convex

regions; we use this new adaptive normal vector discretization in our improved

ghost cell method.

To solve nonlinear quasi-steady reaction-diffusion equations on large domains,

we developed a nonlinear adaptive Gauss-Seidel-type iterative method (NAGSI)

that can solve both linear and nonlinear problems using a localized update on a

regular Cartesian mesh, and is fully compatible with ghost cell extrapolations.

NAGSI is an adaptive solution method that builds upon earlier Gauss-Seidel-

type iterative (GSI) methods by using a dynamic selection criterion to focus

computational effort without the need for a complex adaptive mesh. We find

that NAGSI is second-order accurate when used to solve a variety of linear and

nonlinear problems, and its adaptivity achieves between a 10% and 50% reduction

in computational time when compared to identical GSI methods without our

adaptivity.

We apply these techniques to nonlinear moving boundary problems, where

the velocity of the boundary depends upon the gradients of linear and nonlinear

quasi-steady reaction-diffusion equations. When testing on a modified Hele-Shaw

flow problem, our overall method demonstrates second-order accuracy. In the

Hele-Shaw type problem, we simulate a growing drop of incompressible fluid

in a medium with heterogeneous permeability; the drop grows preferentially in

the regions of highest permeability. We also apply the techniques developed in

this paper to model the growth of glioblastoma (an aggressive brain tumor) in

a large (1 cm × 1 cm), heterogeneous section of brain tissue, including white

and gray matter with differing biomechanical properties, cerebrospinal fluid, and

bone. The numerical advances presented in this paper enabled us to solve this

complex problem in a short period of time (under 24 hours of computation) while

observing new behavior, such as preferential growth of the tumor in regions of

reduced biomechancial resistance.

The outline of this paper is as follows. In Section 2, we introduce the general

system of quasi-steady, linear and nonlinear reaction-diffusion equations that we

solve on moving domains. In Section 3, we discuss the level set method, present

our techniques for robustly and accurately calculating geometric quantities (i.e.,

curvature and normal vectors), introduce the ghost cell method, present our new

normal derivative jump discretization that preserves the tangential derivative

jump, and introduce our nonlinear adaptive Gauss-Seidel-type iterative (NAGSI)
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Fig. 1 Regions for the general nonlinear quasi-steady reaction-diffusion moving bound-
ary system.

scheme for solving linear and nonlinear quasi-steady reaction-diffusion equations.

We close Section 3 by combining these techniques to solve the general system

presented in Section 2. In Section 4, we test the numerical convergence of our

new ghost cell method using the new normal derivative jump discretization and

the NAGSI solver, as well as our overall technique. In Section 5, we present

examples derived from Hele-Shaw flow in a heterogeneous material and tumor

growth in a complex, heterogeneous simulated tissue. We discuss our results and

future work in Section 6.

2 The Equations for the Quasi-Steady Reaction-Diffusion System

We wish to solve systems of (potentially nonlinear) quasi-steady reaction-diffusion

equations on a domain D that is divided into two subdomains Ω(t) and Ωc(t) by

a moving interface Σ(t). See Figure 1. The interface Σ(t) evolves with a velocity

that depends upon the gradients of these solutions. That is, we solve for a system

of functions p1, p2, . . . , pk on D with that satisfy equations of the form

0 = ∇ · (Di(x, t, pi)∇pi) + fR,i (x, t, p1, · · · , pi) pi

+fS,i (x, t, p1, · · · , pi)
(1)

on D\Σ, coupled with jump boundary conditions

[pi] = gi (2)

[Di∇pi · n] = hi (3)

on Σ and either Dirichlet, Neumann, or extrapolation (extrapolated from the

interior of the domain) boundary conditions on ∂D. Here, n is the outward unit
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normal vector (pointing into Ωc), and we define a jump in a quantity q at a point

xΣ ∈ Σ by

[q(x)] = qin − qout

= lim
Ω3x→xΣ

q (x)− lim
Ωc3x→xΣ

q (x) . (4)

In the case where gi = 0 and hi = 0, this reduces to a regular (linear or nonlinear)

diffusion problem throughout the domain D.

The interfacial outward normal velocity V is given by

V =

k∑

i=1

αi∇pi · n. (5)

3 Numerical Solution Techniques

Before discussing our solution technique for the overall system, we introduce the

key methods that will be required. Our overall technique is centered around a level

set/ghost cell method which we first developed for a tumor growth problem in

[36], [38], [39], and [40]. For completeness, we shall describe the overall approach,

with a focus on new improvements in the method.

3.1 Narrow Band/Local Level Set Method

Level set methods were first developed by Osher and Sethian in [45] and have

been used to study the evolution of moving surfaces that experience frequent

topology changes (e.g., merger of regions and fragmentation), particularly in the

contexts of fluid mechanics and computer graphics. (See the books [49,44] and

references [45,43,50].) In the level set method, the location of a region Ω is

captured implicitly by introducing an auxilliary signed distance function φ that

satisfies 



φ(x) < 0 x ∈ Ω

φ(x) = 0 x ∈ Σ = ∂Ω

φ(x) > 0 x /∈ Ω

|∇φ(x)| ≡ 1.

(6)

In the level set approach, instead of explicitly tracking the position of interface

Σ and manually handling topology changes, the level set function is updated by

solving a PDE, which automatically accounts for the interface motion and all

topology changes. If V is the outward normal velocity of the interface, then we

update the position of the interface implicitly via

φt + Ṽ |∇φ| = 0, (7)

where Ṽ is an extension of V off of the interface. The extension Ṽ is often obtained

using a Hamilton-Jacobi PDE. (e.g., see [56] and [2].) The fast marching method
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developed by Adalsteinsson and Sethian in [3] constructs an extension Ṽ while

simultaneously reinitializing the level set function using an ordered sequence of

discrete operations, but is only first-order accurate. In [38] we developed a bilinear

extension technique that is both faster and more accurate than the traditional,

PDE-based approach.

Solving (7) can introduce numerical error into the level set function that

perturbs it away from being a distance function, even for special choices of Ṽ

that are constant in the normal direction from the interface [2,49] and thereby

preserve distance functions. This is compensated for by reinitializing the level set

function at regular intervals by solving

φτ = sign(φ0) (1− |∇φ|) (8)

to steady state [46,52]. Here, τ is pseudo-time, and φ0 is the original level set

function prior to the reinitialization.

We discretize the spatial operator |∇φ| in (7) and (8) using the fifth-order

weighted essentially non-oscillatory (WENO) method [30,29], and we discretize

pseudo-time in (8) using the third-order total variation-diminishing Runge-Kutta

method (TVD-RK) from [25] and [26]. Due to the computational cost and the

complexity of our tumor system, we currently discretize time in (7) using a for-

ward Euler algorithm and a small step size. We discretize the sign function as in

[52].

Lastly, because the primary purpose of a level set function is to track the

position of the interface Σ over time, its accuracy is most important on and near

the interface. To find the best compromise between accuracy and computational

efficiency, we seek to update φ only as much as is necessary to accurately advect

the interface. This can be done using the narrow band/local level set technique

[41,46]. Given an initialized level set function φ, only the points that fall within

a fixed distance of the interface are updated during level set operations (e.g.,

velocity extensions and level set reinitialization). In the level set context, the

narrow band can be identified by

{x : |φ(x)| ≤ R} , (9)

where R > 0 is a fixed constant that is chosen to suit the problem. In our

work with the tumor problem, we use R = 20∆x. In some cases, we shall use a

semiband {x : φ(x) ≤ R}.

3.2 Calculating Geometric Quantities

One of the advantages of the level set method is that the level function encodes

all the geometric information. In particular, the outward-facing normal vector n

is given by

n =
∇φ

|∇φ| , (10)
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Fig. 2 Two interfaces in close contact: Points along the central dashed line are equidis-
tant from both interfaces, resulting in discontinuities in the level set derivatives. The
level set function φ tends to be an inaccurate approximation of a distance function and
irregular in the adjacent gray areas.

and the mean curvature can be computed via

κ = ∇ · n = ∇ ·
( ∇φ

|∇φ|
)

. (11)

As we noted and used in [38] and [39], the level set function can also be used

to estimate the closest point xΣ = (xΣ , yΣ) on the interface to a given point

x = (x, y) by

xΣ = x− φ(x)n(x). (12)

These geometric quantities can readily be calculated at computational grid

points using standard centered differences. If a geometric quantity (e.g., curva-

ture) is desired at a non-grid point x′, then we calculate the geometric quantity at

nearby node points and interpolate to find the desired quantity at x′ [36,38,39].

In our work, we have generally used bicubic interpolation (or cubic interpolation

when x′ lies on a grid edge but not on a computational grid point).

However, as we demonstrated in [36] and [38], the level set function can de-

velop discontinuities in its derivatives in regions that are equidistant from multiple

portions of the interface. Furthermore, advecting and reinitializing the level set

function tends to introduce error into the regions near the singularities. This can

lead to difficulty when computing normal vectors and curvature when two inter-

faces are in close contact, introducing inaccuracy into the geometric quantities.

See Figure 2.

In [39], we introduced a new, geometry-aware curvature discretization to auto-

matically detect and accurately deal with this scenario. To calculate the curvature

κ at a point xΣ = (xΣ , yΣ) on the interface, recall that we need to compute and



8 Paul Macklin, John S. Lowengrub

interpolate the curvature κi,j at nearby computational node points. Using the

level set quality function

Q(x) = |1− |∇φ (x)|| (13)

that we first defined in [36] and [38], we detected level set irregularity whenever

Q ≥ η for some threshold η > 0. (In our work, we have generally used η ∼ 0.001.)

To calculate the curvature κi,j at a computational node point (xi, yj), we evalu-

ated Q at each of the nine grid points in
{(

xi+k, jj+`

)
: −1 ≤ k, ` ≤ 1

}
. If Q < η

at each of these points, then the level set function was deemed sufficiently smooth

to calculate the curvature κi,j using the standard 9-point curvature stencil





φx ≈ φi+1,j−φi−1,j

2∆x φy ≈ φi,j+1−φi,j−1
2∆y

φxx ≈ φi−1,j−2φi,j+φi+1,j

∆x2 φyy ≈ φi,j−1−2φi,j+φi,j+1
∆y2

φxy ≈ φi+1,j+1−φi−1,j+1−φi+1,j−1+φi−1,j−1
4∆x∆y

κi,j ≈ φxxφ2
y−2φxφyφxy+φyyφ2

x

(φ2
x+φ2

y)
3
2

,

(14)

which is second order accurate where the level set function is smooth [36,38].

If we could calculate the curvature κi,j at enough nearby points to compute a

bicubic or bilinear interpolation at xΣ , then we used that interpolated curvature

value.

If Q > η at one of the points on the stencil, we constructed a positively-

oriented local approximation of the interface γ(s) = (x(s), y(s)) by finding five

points {xk = (xk, yk)}2k=−2 with x0 = xΣ on the interface and calculating a

quadratic least squares polynomial fit. After adjusting γ to ensure that γ(0) =

xΣ , we then used γ to construct a local level set function that effectively removed

the influence of the nearby irregularity, which we could then discretize using the

standard 9-point stencil. In our numerical testing, this geometry-aware, adaptive

curvature discretization was second order accurate, even during periods of topo-

logical change such as the merger of drops in modified Hele-Shaw flow [39]. In

more recent testing, we have found that so long as γ is a least squares quadratic

or cubic polynomial fit and not a direct interpolation of the five points xk on the

interface, it can be differentiated directly to compute the curvature.

We now extend this technique to calculate normal vectors. Suppose we desire

the normal vector at a computational node point (xi, yj). If the level set is suffi-

ciently smooth at the four points of
{
(xi−1, yj), (xi, yj−1), (xi+1, yj), (xi, yj+1)

}
(i.e., Q < η at those points), then we use the standard normal vector discretiza-

tion 



φx ≈ φi+1,j−φi−1,j

2∆x

φy ≈ φi,j+1−φi,j−1
2∆y

n ≈ 1√
φ2

x+φ2
y+ε

(φx, φy) ,

(15)

where ε is a small positive number used to avoid division by zero; we use ε ∼ 10−16

in our work.
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Otherwise, we identify the closest point on the interface xΣ by (12), con-

struct the approximating curve γ(s) = (x(s), y(s)) through xΣ as in the adaptive

curvature algorithm, and directly differentiate the curve to determine the unit

tangent and outward normal vectors:

s =
γ′(0)

||γ′(0)|| =
1√

(x′(0))2 + (y′(0))2

(
x′(0) , y′(0)

)
(16)

n =
1√

(x′(0))2 + (y′(0))2

(
y′(0) , −x′(0)

)
. (17)

We have found that both quadratic and cubic least squares polynomial fits

are sufficiently smooth for this direct differentiation of the normal and tangent

vectors.

3.3 The Ghost Cell Method

We wish to solve quasi-steady reaction-diffusion problems of the form





0 = ∇ · (D(x)∇p) + fR(x)p + fS(x) x ∈ Ω ∪Ωc

[p] = g x ∈ Σ

[D∇p · n] = h x ∈ Σ,

(18)

coupled with standard (e.g., Dirichlet, Neumann, or extrapolation) boundary

conditions on ∂D. (Note that D and p are scalars, i.e., D = Di and p = pi for

some fixed 1 ≤ i ≤ k in the notation of (1).)

Standard finite differences cannot be applied across the interface due to the

jump boundary conditions on Σ. The ghost cell method was developed to deal

with this issue when solving elliptical problems by creating “ghost” computa-

tional points and using those ghost points in standard finite difference discretiza-

tions [24,17,34,23,22]. In [36] and [38], we extended the ghost cell method to

attain second-order accuracy on interior problems (i.e., p is constant in Ωc) with

boundary conditions that depend upon the geometry (e.g., curvature) and with-

out a jump condition on the normal derivative. A similar extension to the ghost

cell method was presented in [21] to solve Laplace’s equation without geometric

boundary conditions and yielded fourth-order convergence on fixed domains and

third-order convergence on moving boundaries. In [40], we extended our approach

to solve systems like (18) in the case where h = 0 and D was constant in Ω and

Ωc (with different constants). We applied the method to model avascular tumor

growth in [40] and verified second-order accuracy for our overall solutions, al-

though our method numerically smeared jumps in the tangential derivative. In

the following section, we present our new ghost cell scheme, which includes a new

technique for discretizing the normal derivative jump condition without smearing

the tangential derivative jump.
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Alternative approaches for overcoming the tangential smearing problem in-

clude the immersed interface method (IIM) [32] and the matched interface bound-

ary (MIB) method [59,58,55]. The IIM requires the use of local coordinates (based

on the normal and tangential directions of the interface) to properly discretize

the normal derivative jump. The MIB method is a high-order generalization of

the IIM and the ghost cell method that constructs elaborate extensions of the

solution to several ficticious points on both sides of the interface; the extensions

are designed to explicitly satisfy [p], [∂p/∂s], and [D∂p/∂n] simultaneously. The

ghost fluid method has several advantages over these alternatives. Because the

method is applied in a dimension-by-dimension manner, it is simple to imple-

ment and can be trivially extended to higher dimensions. Its accuracy can easily

be improved by using higher-order extrapolations on each side of the interface.

Like the MIB method, our new ghost cell method satisfies the normal deriva-

tive jump boundary condition without smearing the tangential derivative jump,

but it retains the dimension-by-dimension aspect of the ghost cell method and

does not require the explicit treatment of the tangential derivative jump. It is

also much simpler to implement and can be incorporated into existing ghost cell

frameworks.

3.3.1 Ghost Cell Extrapolations for the Diffusional Term

Suppose we wish to discretize the x-derivative of ∇·(D(x)∇p) at a computational

node point x = (xi, yj), and assume that D is C1 with respect to x throughout

Ω and Ωc. (The diffusion constant may be discontinuous across the interface Σ;

this case is treated below.) If (xi−1, yj), (xi, yj), and (xi+1, yj) are all in the

same region, i.e.,

φi−1,j ≤ 0, φi,j ≤ 0, and φi+1,j ≤ 0, (19)

or

φi−1,j > 0, φi,j > 0, and φi+1,j > 0, (20)

then we can use the standard second-order discretization

∂x (D(x)px) ≈ 1

∆x2

(
D−

x pi−1,j −
(
D−

x + D+
x

)
pi,j + D+

x pi+1,j

)

D−
x = D

(
xi − 1

2
∆x, yj

)

D+
x = D

(
xi +

1

2
∆x, yj

)
. (21)

Suppose, however, that (xi, yj) and (xi+1, yj) are not in the same region.

Assume without loss of generality that (xi, yj) ∈ Ω and (xi+1, yj) ∈ Ωc; the case

where (xi, yj) ∈ Ωc and (xi+1, yj) ∈ Ω is treated similarly. Then the interface Σ

must separate (xi, yj) and (xi+1, yj) at some point

xΣ = (xΣ , yj) = (xi + θ∆x, yj), (22)
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Fig. 3 A typical ghost cell extrapolation p̂i+1. Particular care must be taken to satisfy
[p] = g and [D∇p · n] = h without numerically smearing any tangential derivative jump
[∇p · s].

where 0 < θ ≤ 1. In this scenario, we must modify our computational stencil by

extending the solution in Ω to a “ghost cell point” p̂i+1,j in the other region; we

replace pi+1,j in (21) with the extrapolation p̂i+1,j . See Figure 3. If (xi−2, yj)

and (xi−1, yj) are both in Ω, then we obtain p̂i+1,j as a quadratic extrapolation

of p from pi−2,j , pi−1,j , and u`:

p̂i+1,j =
2(1− θ)

2 + θ
pi−2 − 3(1− θ)

1 + θ
pi−1 +

6

(1 + θ)(2 + θ)
p`. (23)

If (xi−1, yj) ∈ Ω but (xi−2, yj) /∈ Ω, then we obtain p̂i+1,j by linear extrap-

olation from pi−1,j and p`:

p̂i+1,j =
−(1− θ)

1 + θ
pi−1,j +

2

1 + θ
p`. (24)

If (xi−1, yj) /∈ Ω, then we use the constant extrapolation p̂i+1,j = p`. Note

that in all cases, we require p`. In the ghost cell approach, p` is determined by

the jump boundary conditions. We shall return to this point in the next section.

If D is continuous across the interface Σ, then D+
x may be used in the ghost

cell approximation without modification. If D is discontinuous across Σ, then we

replace it with an extension D̂+
x in a manner analogous to p̂i+1,j . Suppose that

D is defined at computational node points. If
(
xi−2, yj

)
and

(
xi−1, yj

)
are both

in Ω, then we use quadratic extrapolation:

D̂+
x =

3

8
Di−2,j − 5

4
Di−1,j +

15

8
Di,j . (25)

If
(
xi−1, yj

) ∈ Ω but
(
xi−2, yj

)
/∈ Ω, then we use linear extrapolation from

Di−1,j and Di,j :

D̂+
x = −1

2
Di−1,j +

3

2
Di,j . (26)
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If
(
xi−1, yj

)
/∈ Ω, then we use constant extrapolation D̂+

x = Di,j .

The case where we require a ghost cell extrapolation p̂i−1,j is completely

analogous, and the y-derivative is discretized in exactly the same manner. To

apply the method to a 3-D problem, for instance, we need only repeat the process

separately for the z-derivative term ∂z (D(x)pz).

3.3.2 Determining p` from the Jump Boundary Conditions

As we have seen, the ghost cell extrapolations require p`. At the same time, the

jump boundary conditions have not yet been applied to the scheme. By intro-

ducing the jump boundary conditions into the ghost cell extrapolation, we can

simultaneously satisfy the jump conditions while eliminating p` from the extrap-

olation, instead expressing the discretization solely in terms of computational

node points.

First, we discretize the jump boundary condition by

p` − pr = −sign(φi,j)g(xΣ). (27)

The −sign(φi,j) term ensures that the jump condition has been applied in the

proper direction from region Ω to region Ωc.

This introduces an additional, non-grid point pr into our calculation. How-

ever, by considering the normal derivative jump condition, we shall have two

equations for p` and pr, allowing us to completely eliminate them from the ex-

trapolation. The proper discretization of the normal derivative jump [D∇p · n]

across the interface has been an open problem since the introduction of the ghost

cell method for the Poisson problem [17,34,23]. Suppose that we wish to dis-

cretize [D∇p · n] at the point xΣ = (xΣ , yj) = (xi + θ∆x, yj) from the preceding

discussion. In [34], the normal derivative jump was discretized as

[D∇p · n] =

(
D

∂p

∂n

)

`

−
(

D
∂p

∂n

)

r

≈ D`
p` − pi,j

θ∆x
−Dr

pi+1,j − pr

(1− θ)∆x
, (28)

where

Dr = lim
ζ↓x+θ∆x

D
(
ζ, yj

)
, D` = lim

ζ↑x+θ∆x
D

(
ζ, yj

)
,

pr = lim
ζ↓x+θ∆x

p
(
ζ, yj

)
, and p` = lim

ζ↑x+θ∆x
p

(
ζ, yj

)
. (29)

Notice that this is equivalent to assuming that the normal vector cuts the

computational mesh at a right angle (i.e., n = (1, 0)), potentially leading to

numerical smearing of any jump in the tangential derivative. Furthermore, if

θ ∼ 0 or θ ∼ 1, then the discretization can be unstable due to the uneven

spacing of the stencil points. See the left frame in Figure 4. In numerical testing

in [34], this stencil was less than first-order accurate due to the low order of
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Fig. 4 Left: The traditional, unstable stencil for [D∇p · n] from [34]. Right: Our sta-
blized extension of this stencil from [40].

the discretization (first-order left and right differences of the derivative), coupled

with the numerical smearing of the tangential derivatives.

In [40], we introduced a new discretization for the normal derivative jump in

the case where [D∇p · n] = 0:

[D∇p · n] ≈ D`
p` − pi−1,j

(1 + θ)∆x
−Dr

pi+2,j − pr

(2− θ)∆x
. (30)

This discretization guarantees that all three stencil points (xi−1, yj), (xΣ , yj),

and (xi+1, yj) are at least ∆x apart and consequently solves the stability problem.

However, the discretization still numerically smears any jump in the tangential

derivative because it approximates the normal vector as n = (1, 0). See the right

frame in Figure 4.

We now introduce a new normal derivative jump discretization that eliminates

the numerical smearing of the jump in the tangential derivative. Let n = (nx, ny),

and suppose that nx · ny ≥ 0, i.e., the normal vector faces up and right or down

and left. Assuming no additional nearby interfaces (so that all right and left

points are contained within the same regions), we begin by defining

ur = (xi+2 − xΣ , 0) = ((2− θ)∆x, 0) ,

vr =
(
xi+1 − xΣ , yj+1 − yj

)
= ((1− θ)∆x, ∆y) ,

u` = (xi−1 − xΣ , 0) = (−(1 + θ)∆x, 0) , and

v` =
(
xi − xΣ , yj−1 − yj

)
= (−θ∆x,−∆y) .

(31)

See the left frame in Figure 5.

Because ur and vr are linearly independent, they form a basis for R2, and

we can write

n = arur + brvr, (32)

where ar and br are obtained by solving the linear system

(ur,ur) ar + (vr,ur) br = (n,ur)

(ur,vr) ar + (vr,vr) br = (n,vr) .
(33)
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Fig. 5 Our new first-order (left) and higher-order (right) computational stencils for
the normal derivative jump [D∇p · n].

Using this, we can express (∂p/∂n)r as a combination of grid (ur) and off-grid

(vr) directional derivatives:
(

∂p

∂n

)

r

= (∇p)r · n

= ar (∇p)r · ur + br (∇p)r · vr

= ar ||ur|| (∇p)r ·
ur

||ur|| + br ||vr|| (∇p)r ·
vr

||vr||

= ar ||ur||
(

∂p

∂ (ur/ ||ur||)
)

r

+ br ||vr||
(

∂p

∂ (vr/ ||vr||)
)

r

, (34)

where

||ur|| = (2− θ)∆x, ||vr|| =
√

(1− θ)2∆x2 + ∆y2. (35)

Using one-sided, first-order differences, we obtain the approximation

(
∂p

∂n

)

r

≈ ar ||ur||
(
pi+2,j − pr

)

||ur|| + br ||vr||
(
pi+1,j+1 − pr

)

||vr||
= ar

(
pi+2,j − pr

)
+ br

(
pi+1,j+1 − pr

)
. (36)

Similarly, u` and v` form a basis for R2, and we can express

n = a`u` + b`v`, (37)

rewrite the normal derivative as
(

∂p

∂n

)

`

= a` ||u`||
(

∂p

∂ (u`/ ||u`||)
)

`

+ b` ||u`||
(

∂p

∂ (v`/ ||v`||)
)

`

, (38)

and approximate it (to first-order) as
(

∂p

∂n

)

`

≈ a`

(
pi−1,j − p`

)
+ b`

(
pi,j−1 − p`

)
. (39)
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By combining (36) and (39), we obtain a new discretization of [D∇p · n] = h:

[D∇p · n] ≈ D`

(
a`

(
pi−1,j − p`

)
+ b`

(
pi,j−1 − p`

))

−Dr

(
ar

(
pi+2,j − pr

)
+ br

(
pi+1,j+1 − pr

))

= −sign(φi,j)h(xΣ). (40)

When we combine this with the jump condition in (27), p` and pr are com-

pletely determined. In practice, we implement this new discretization in the fol-

lowing way:

1. We construct 2× 2 linear systems for ar and br and and a` and b` and solve

them exactly using the standard inversion for 2× 2 systems.

2. We construct a 2×2 linear system for pr and p` using the jump condition for

p` − pr and the normal derivative jump discretization in (40). We solve this

linear system for p` and pr using the standard 2 × 2 inversion and use p` in

the ghost cell discretization.

The case where nx · ny < 0 is similar: we replace pi+1,j+1 by pi+1,j−1 in vr,

and we replace pi,j−1 by pi,j+1 in vr. All other calculations are identical. The

case of discretizing [D∇p · n] at a point (xi − θ∆x, yj) is completely analogous,

and the discretization in the y-direction is identical. In the 3-D case, we would

proceed similarly by defining third basis vectors such as

wr = (xi+1 − xΣ , 0, zk+1 − zk) =

(
(1− θ)∆x, 0, ∆z

)
,

w` = (xi − xΣ , 0, zk−1 − zk) =

(
−θ∆x, 0,−∆z

)
.

(41)

This method has several advantages. In the spirit of the ghost cell method,

the new stencil can be expressed entirely in terms of computational grid points

and the jump interface location. Furthermore, the discretization can be applied

in a dimension-by-dimension manner, just as in existing ghost cell methods. The

implementation is simple and can be readily substituted into existing code in

place of previous normal discretizations. Because the stencil discretizes D∂p/∂n

in the true direction of the normal vector, it should result in more accurate nu-

merical solutions with less numerical smearing of the tangential derivative jump.

Whereas the ghost cell method in [34] was constructed with restrictions to guar-

antee a diagonally-dominant matrix system that must necessarily converge, we

have no rigorous proof of convergence for our method. However, we find that in

practice that our method does converge, even for difficult interfacial morpholo-

gies. (Indeed, we shall verify that our method is first-order accurate, even in

situations where the discretization by [34] fails to converge; the discretization we

present in the next section attains above-1.5-order accuracy.) Lastly, we note that

if n = (1, 0) or n = (−1, 0), then the normal derivative jump discretization in (40)

simplifies to (30). This further illustrates the point that earlier discretizations of

the normal derivative jump were equivalent to assuming that the interface cuts

the computational grid at a right angle.
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3.3.3 Higher-Order Approximations of [D∇p · n]

By using additional stencil points (with the same definitions of u`, ur, v`, and

vr), we can improve the accuracy of the normal derivative jump discretization.

If (xi+1, yj), (xi+2, yj), and (xi+3, yj) are all in the same region, we can replace

the grid-aligned partial derivative in (34) with the second-order approximation

(
∂p

∂ (ur/ ||ur||)
)

r

≈ −(5 + 2θ)

(2− θ)(3− θ)∆x
pr +

(3− θ)

(2− θ)∆x
pi+2,j

− (2− θ)

(3− θ)∆x
pi+3,j . (42)

See the right frame of Figure 5.

Similarly, if (xi, yj), (xi−1, yj), and (xi−2, yj) are all in the same region, then

we can replace the grid-aligned partial derivative in (38) with the second-order

approximation

(
∂p

∂ (u`/ ||u`||)
)

`

≈ − (1 + θ)

(2 + θ)∆x
pi−2,j +

(2 + θ)

(1 + θ)∆x
pi−1,j

− (3 + 2θ)

(1 + θ)(2 + θ)∆x
p`. (43)

Because v` and vr generally do not intersect the computational mesh at grid

points, interpolation of nearby grid points is required to improve the accuracy of

the off-grid directional derivatives in (34) and (38).

If (xi+1, yj), (xi+1, yj+1), (xi+1, yj+2), and (xi+2, yj+2) are all in the same

region, then we can replace the off-grid directional derivative in (34) by the

higher-order approximation

(
∂p

∂ (vr/ ||vr||)
)

r

≈ − 3

2 ||vr||pr +
2

||vr||pi+1,j+1

− 1

2 ||vr||
[
θpi+1,j+2 + (1− θ)pi+2,j+2

]
, (44)

where the bracketed term is a linear interpolation to obtain a point along the

path of vr. See the right frame of Figure 5.

Similarly, if (xi, yj), (xi, yj−1), (xi, yj−2), and (xi−1, yj−2) are all in the same

region, then we can improve our approximation of the off-grid derivative in (38)

with

(
∂p

∂ (v`/ ||v`||)
)

`

≈ − 3

2 ||v`||
p` +

2

||v`||
pi,j−1

− 1

2 ||v`||
[
(1− θ)pi,j−2 + θpi−1,j−2

]
. (45)
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Putting all this together, the higher-order discretization of [D∇p · n] = h is

given by

[D∇p · n] ≈ D`a`

(
− (1 + θ)2

(2 + θ)
pi−2,j + (2 + θ)pi−1,j − (3 + 2θ)

(2 + θ)
p`

)

+D`b`

(
−3

2
p` + 2pi,j−1 − 1

2

[
(1− θ)pi,j−2 + θpi−1,j−2

])

−Drar

(−(5 + 2θ)

(3− θ)
pr + (3− θ)pi+2,j − (2− θ)2

(3− θ)
pi+3,j

)

−Drbr

(
−3

2
pr + 2pi+1,j+1 − 1

2

[
θpi+,j+2 + (1− θ)pi+2,j+2

])

= −sign(φi,j)h (xΣ) . (46)

In principle, all these partial differences can be made more accurate still by

using additional node points. In particular, one could use quadratic or cubic

interpolations in the off-grid directional derivative differences.

3.4 NAGSI: a Nonlinear Adaptive Gauss-Seidel type Iterative method for

solving Nonlinear Quasi-Steady Reaction-Diffusion Equations

We now develop a fully-nonlinear, adaptive method to solve the nonlinear reaction-

diffusion equation

0 = ∇ · (D (x, p)∇p) + fR (x, p) p + fS (x, p) , x ∈ D, (47)

where D and p are scalars (i.e., D = Di and p = pi for some fixed 1 ≤ i ≤ k in

the notation of (1)), D is a rectangular domain in Rn, and standard boundary

conditions (e.g., Neumann, Dirichlet, or extrapolation) have been assigned. Here,

fR and fS are the reaction and source terms, respectively. Without loss of gen-

erality, we assume that fR ≤ 0; if this condition is not satisfied, then the positive

part of fR p can be rewritten as part of the source term fS . The diffusivity D is

assumed to be smooth and strictly positive. For simplicity, we shall consider the

2-D case where D = [a, b]× [c, d]; the n-D case is completely analogous.

In Section 3.4.1, we give a semi-implicit formulation of our method which

allows for solving (47) using a GSI method, similar to pseudo-time methods

discussed in [14,33,42] and GSI method literature. (e.g., see [27], [13], and [53].)

Using this formulation, we present a new form of adaptivity in Section 3.4.2 that

can be applied to regular Cartesian meshes.

3.4.1 A Semi-Implicit Formulation of GSI Methods

To solve (47), we solve the related equation

∂p

∂τ
= ∇ · (D (x, p)∇p) + fR (x, p) p + fS (x, p) (48)
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to steady state, where τ is pseudo-time. For numerical stability, we begin by

implicitly discretizing pseudo-time with a backwards Euler difference, lagging

the dependence of D on p, and applying the standard second-order centered

difference to the diffusional term:

pn+1
i,j − pn

i,j

∆τ
=

1

∆x2

(
D−

x pn+1
i−1,j −

(
D−

x + D+
x

)
pn+1
i,j + D+

x pn+1
i+1,j

)

+
1

∆y2

(
D−

y pn+1
i,j−1 −

(
D−

y + D+
y

)
pn+1
i,j + D+

y pn+1
i,j+1

)

+fR

(
xi, p

n
i

)
pn+1
i + fS

(
xi, p

n
i

)
+O

(
∆τ + ∆x2 + ∆y2

)
,

D−
x = D

(
xi − 1

2
∆x, yj ,

1

2

(
pn
i−1,j + pn

i,j

))
,

D+
x = D

(
xi +

1

2
∆x, yj

1

2

(
pn
i,j + pn

i+1,j

))
,

D−
y = D

(
xi, yj − 1

2
∆y,

1

2

(
pn
i,j−1 + pn

i,j

))
,

D+
y = D

(
xi, yj +

1

2
∆y,

1

2

(
pn
i,j + pn

i,j+1

))
. (49)

Here, pn
i,j = p

(
xi, yj , τn

)
, xi = a + i∆x, yj = c + j∆y, τn = n∆τ , and ∆x, ∆y

and ∆τ are spatial and pseudo-temporal discretization step sizes, respectively.

This system has the form

A
(
x,pn)

pn+1 = b
(
x,pn)

(50)

which can be solved to steady state by constructing the operator A (x,pn) and

right-hand side b (x,pn) and solving the linear system in (50) with an itera-

tive method (e.g., BiCG-Stab(`) from [51]) at every pseudo-time step until the

system reaches steady state. However, constructing these operators may be com-

putationally expensive, making the method disadvantageous. Furthermore, after

some initial large change throughout the computational domain, the solution may

only be rapidly changing on a small subset of the domain. In such a case, the ma-

jority of the computational cost of constructing and solving a new linear system

at every pseudo-timestep will be unnecessary.

By changing the points used in the discretization of ∇ · (D∇p), we can make

the scheme semi-implicit. Assuming that we sweep through grid points with in-

creasing i and j:

pn+1
i,j − pn

i,j

∆τ
=

1

∆x2

(
D−

x pn+1
i−1,j −

(
D−

x + D+
x

)
pn+1
i,j + D+

x pn
i+1,j

)

+
1

∆y2

(
D−

y pn+1
i,j−1 −

(
D−

y + D+
y

)
pn+1
i,j + D+

y pn
i,j+1

)

+fR

(
xi, p

n
i

)
pn+1
i + fS

(
xi, p

n
i

)
+O

(
∆τ + ∆x2 + ∆y2

)
,
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D−
x = D

(
xi − 1

2
∆x, yj ,

1

2

(
pn+1
i−1,j + pn

i,j

))
,

D+
x = D

(
xi +

1

2
∆x, yj

1

2

(
pn
i,j + pn

i+1,j

))
,

D−
y = D

(
xi, yj − 1

2
∆y,

1

2

(
pn+1
i,j−1 + pn

i,j

))
,

D+
y = D

(
xi, yj +

1

2
∆y,

1

2

(
pn
i,j + pn

i,j+1

))
, (51)

which we can solve algebraically for pn+1
i,j based upon known quantities:

pn+1
i,j =

pn
i,j

∆τ +
D+

x pn
i+1,j+D−x pn+1

i−1,j

∆x2 +
D+

y pn
i,j+1+D−y pn+1

i,j−1
∆y2 + fS

(
xi, yj , p

n
i,j

)

1
∆τ + D−

x +D+
x

∆x2 +
D−y +D+

y

∆y2 − fR

(
xi, yj , p

n
i,j

) .(52)

Using this, we now introduce a 2-D GSI scheme:

Step 1: Discretize the domain [a, b]× [c, d] by

a = x0, · · · , xi = a + i∆x, · · · , xm = a + m∆x = b (53)

c = y0, · · · , yj = c + j∆y, · · · , yn = c + n∆n = d. (54)

Step 2: Store an initial guess in the 2-D array p =
(
pi,j

)
.

Step 3: Update the boundary points
{
p0,j , pm,j

}n

j=0
and

{
pi,0, pi,n

}m

i=0
accord-

ing to the boundary conditions.

Step 4: Choose a tolerance ε, and set r > ε.

Step 5: While r > ε:

Part a: For 1 ≤ i < m and 1 ≤ j < n:

i: Set r = 0.

ii: Calculate pn+1
i,j based upon Equation 52.

iii: If ri,j =
∣∣∣pn+1

i,j − pn
i,j

∣∣∣ > r, set r = ri,j .

iv: Overwrite pi,j with the newly calculated pn+1
i,j .

The resulting scheme, which overwrites previous values pn
i,j with updated

values pn+1
i,j while sweeping through the domain, is a nonlinear Gauss-Seidel-like

iterative (GSI) method. To prevent biases (e.g., asymmetry) from the update

order, we alternate sweeping directions: up and right (increasing i and j), then

up and left (decreasing i, increasing j), then down and left (decreasing i and

j), and then down and right (increasing i and decreasing j). By overwriting

the current values in the
{
pi,j

}
data structure with newly-calculated values, the

proper indexing of the pseudo-time index in the discretization of ∇ · (D∇p) is

automatic.

There are numerous advantages to this technique. First and foremost, there

is no need to invert a large linear system at every iteration. Second, because the

scheme makes use of updated information while sweeping through the domain
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(unlike Jacobi-like iterations), the effects of linearizing the equation with respect

to pseudo-time are reduced. Because (52) updates the solution based upon local

operations (i.e., it only requires information on nearby computational nodes), it

is parallelizable and simple to implement, particularly on shared-memory archi-

tectures. Lastly, we note that this technique is fully compatible with the ghost

cell method of enforcing jump boundary conditions on irregular domains by re-

placing the appropriate point in the stencil with a ghost cell extrapolation. (e.g.,

replace pn
i+1,j with p̂n

i+1.j .)

We note that Gauss-Seidel-like iterative methods have been used to solve

nonlinear problems in the past, generally in the context of nonlinear optimization.

(e.g., see [27], [13].) The idea of adapting linear iterative methods to solving

nonlinear problems is not new. (e.g., see [53].) However, most of those techniques

use complicated, block structures, which in themselves require iterative solutions

and are not as well-suited to adaptivity.

3.4.2 Adaptivity

The local nature of our GSI technique allows for a new approach to adaptivity us-

ing a regular Cartesian mesh. On any sweep through the solution domain, as the

solution converges, the numerical solution tends to change most on a small frac-

tion of the computational nodes. Therefore, we can select computational nodes

where the numerical solution is changing most rapidly and use (52) to update

only those nodes. The modified, nonlinear adaptive GSI technique (NAGSI) is as

follows:

Step 1: Discretize the domain [a, b]× [c, d] by

a = x0, · · · , xi = a + i∆x, · · · , xm = a + m∆x = b (55)

c = y0, · · · , yj = c + j∆y, · · · , yn = c + n∆n = d. (56)

Step 2: Store an initial guess in the 2-D array p =
(
pi,j

)
.

Step 3: Update the boundary points
{
p0,j , pm,j

}n

j=0
and

{
pi,0, pi,n

}m

i=0
accord-

ing to the boundary conditions.

Step 4: Choose a tolerance ε, and set r > ε.

Step 5: While r > ε:

Part a: For 1 ≤ i < m and 1 ≤ j < n:

i: Set r = 0.

ii: Calculate pn+1
i,j based upon (52).

iii: If ri,j =
∣∣∣pn+1

i,j − pn
i,j

∣∣∣ > r, set r = ri,j .

iv: Overwrite pi,j with the newly calculated pn+1
i,j .

Part b: Set a threshold η < r. In our work, we have used η = 1
4r.

Part c: Sweep through the domain again (with a different sweep direction),

this time creating a list L = {(ik, jk)}N
k=1 of nodes where ri,j > η.

Part d: Repeat M times:
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i: For 1 ≤ k ≤ N , update pik,jk
according to Equation 52.

The scheme is illustrated schematically in Figure 6.

Fig. 6 Overview of the NAGSI adaptivity: upper left: We sweep through the entire
domain and update all points. We then set a threshold η not exceeding the residual. up-
per right: We sweep through the entire domain again (using a different sweep pattern)
and flag all points where the change exceeded the threshold η. lower left and right:
We sweep through and update the flagged points only, for one or more times.

In our work, we use M = 2; in testing, we have found that additional itera-

tions through the selected nodes L resulted in little change in the approximate

solution. This is because L behaves as a small, irregular subdomain of D with

fixed boundary conditions (i.e., the remaining computational nodes), and so an

elliptical equation can approach a steady state on the subdomain quickly. How-

ever, the optimal choice of M may depend upon the problem under study and

could potentially be dynamically chosen; we are currently investigating these

approaches.

While the method does need to sweep through the entire computational do-

main for some of the iterations, its adaptivity is based upon the same philosophy

of traditional adaptive mesh techniques of focusing computational effort adap-

tively where it is most needed, leading to accelerated convergence when compared

to non-adaptive, fixed grid methods. In testing on level set problems with large

solution gradients, we have found that the adaptivity decreases the computational

time of NAGSI by 10% to 50% (results not shown). Furthermore, the strategy
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for choosing the list L of flagged points can be tailored to the computational

problem. (e.g., in level set methods, one might choose L to include a narrow

band about the zero level set.) Because the method requires little extra effort to

implement, it can conceivably be used to improve performance in existing compu-

tational frameworks with a minimum of reprogramming. We note that NAGSI’s

convergence could be accelerated by combining it with multigrid techniques (e.g.,

such as those used for iterative techniques in computational fluid dynamics prob-

lems by [14], [33], and [42]) by implementing NAGSI at each level of the multigrid

technique. Lastly, we note that while we have focused our adaptivity approach on

improving performance on fixed, regular grids, we believe it is possible to apply

a similar philosophy to irregular grids by choosing local discretizations that can

be applied to selected mesh points for improved performance.

3.5 Solving the Overall System

We solve the overall model from Section 2 using a level set/ghost cell method

that uses the methods we just introduced. At every fixed time t, our method

consists of the following steps:

Step 1: Maintain φ as a distance function, and pre-compute any required geo-

metrical quantities, such as normal vectors and curvature. Use the geometry-

aware discretization discussed in Section 3.2.

Step 2: Solve the quasi-steady reaction-diffusion problems for each pi using

NAGSI. (See Section 3.4.) In the event that jump boundary conditions [pi]

and [Di∇pi · n] are prescribed, use the ghost cell extrapolations described in

Section 3.3.

Step 3: Calculate and extend the normal velocity V :

Part a: Calculate ∇pi for each i in the narrow band {x : |φ(x)| ≤ R} using

second-order centered differences if all points in the stencil are in the same

region (all inside Ω or all outside Ω). Otherwise, use high-order, one-sided

Taylor expansions. In our work, we use five-point stencils when possible,

and degrade to lower-order one-sided stencils as necessary.

Part b: Use our bilinear velocity extension from [38] to create a normal

extension Ṽ of V =
∑

αi∇pi · n.

Part c: Problems with geometric boundary conditions (e.g., those that de-

pend upon the curvature κ) require that ∆t ∼ ∆x3 to maintain stability.

To avoid this prohibitive time step restriction, apply the Gaussian filter-

ing technique we developed in [36] and [38] to the extended velocity Ṽ ,

which removes high-frequency noise from the velocity. Note that if the

jump boundary conditions of the pi do not require the curvature, then

this filtering may not be required.

Part d: Use our bilinear velocity extension from [38] to extend the filtered

velocity.

Part e: Calculate the CFL condition ∆t = ∆x
2max(Ṽ )

.
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Traditional Stencil
∆x `∞ error
0.16 0.168897
0.08 0.170776
0.04 0.168131

order 0.00751

New Stencil (1st order)
∆x `∞ error
0.16 0.00295862
0.08 5.11947e-4
0.04 9.22828e-5

order 2.50

New Stencil (Higher order)
∆x `∞ error
0.16 0.00331730
0.08 5.73877e-4
0.04 8.18444e-5

order 2.67

Table 1 Comparison of the [D∇p · n] stencil for the traditional (left), first-order new
(middle), and higher-order new (right) methods on Example 1.

Step 4: Construct Ṽ |∇φ| using fifth-order WENO. Use this to advect the in-

terface Σ.

Step 5: (Optional) If using a higher-order Runge-Kutta approximation, repeat

steps (2)-(4) for each part of the Runge-Kutta scheme.

4 Convergence of the Numerical Techniques

We now present convergence results for the newly developed numerical techniques

and the overall scheme. For a given norm ||·||, we define two orders of convergence.

If ph is a numerical solution computed on a computational grid with mesh length

h, and if the exact solution p is known, then we define

order of convergence =

log

( ||ph1−p||
||ph2−p||

)

log
(

h1
h2

) (57)

where the norm is computed at the computational node points, and h2 < h1 are

two different mesh lengths.

If the exact solution is unknown, then we solve on meshes with mesh lengths

h1 = h, h2 = 1
2h, and h3 = 1

4h, and we compute the order of convergence via

order of convergence =

log

( ||ph−ph2 ||
||ph2−ph3 ||

)

log (2)
, (58)

where each norm is computed on the common grid points. In our work, we use

the discrete maximum `∞ norm for all convergence testing.

4.1 Convergence of the Ghost Cell Method with the New [D∇p · n] stencils and

NAGSI

Example 1: An Example with Large Tangential and Normal Jumps:
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To test the convergence and impact of our new normal derivative jump dis-

cretization, we studied the following problem

∇2p = 0 if |x| < 1 (59)

∇2p = 0 if |x| > 1 (60)

[p] = x + y if |x| = 1 (61)

[∇p · n] = x + y if |x| = 1 (62)

u = 0 if x ∈ ∂ ([−2, 2]× [−2, 2]) , (63)

whose solution is

p(x, y) =

{
x + y if |x| ≤ 1

0 else.
(64)

Note that the solution in (64) has a nonzero jump in tangential derivative:

[∇p · s] = (1, 1) · (y,−x) = y − x, (65)

where s is the positively-oriented tangent vector along boundary of the circle.

We solved this system with mesh sizes ∆x ∈ {0.16, 0.08, 0.04}, using our new

NAGSI solver along with the ghost cell extrapolations described above, us-

ing both the traditional, grid-aligned normal derivative stencil from [34] and

the new normal derivative jump stencils. The traditional stencil from [34]

(as stabilized in [40]) failed to converge (left part of Table 1), with visible

distortions in the solution (blue squares in Figure 7.) In contrast, when we

recomputed the solution using our new normal derivative jump stencils, we

obtained 2.50- and 2.67-order convergence for our first-order and higher-order

stencils, respectively (middle and right parts of Table 1, respectively). Thus,

we see that preserving the accuracy in the tangential derivative jump can

have a substantial impact on the overall accuracy of the solution and is nec-

essary for convergence in this example.

Example 2: An Example with a Large Tangential Jump and no Normal Jump:

We solved the same system as in the previous example, but with

[∇p · n] = 0 if |x| = 1. (66)

In this example, the traditional stencil converged, but only to order 0.319

(top part of Table 2). In contrast, our first-order method attained 1.11-order

accuracy (lower left part of Table 2), and our higher-order method achieved

1.53-order convergence (lower right part of Table 2).

Example 3: An Example with Large Normal Jumps and Zero Tangential Jumps:
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Fig. 7 Comparison of solutions along the line y = x using the traditional (blue squares)
and new (red circles) [D∇p · n] stencils using ∆x = 0.04. The exact solution is given by
the solid black line.

difference `∞ norm
p0.16 − p0.08 0.0282768
p0.08 − p0.04 0.0226730

order 0.319

difference `∞ norm
p0.16 − p0.08 0.0201711
p0.08 − p0.04 0.00936549

order 1.11

difference `∞ norm
p0.16 − p0.08 0.00655476
p0.08 − p0.04 0.00226471

order 1.53

Table 2 Comparison of the [D∇p · n] stencil for the traditional (top) and new first-
order (bottom left) and higher-order (bottom right) methods on Example 2.

To further investigate the accuracy of our new normal jump stencil, we studied

the following problem:

∇2p = −4 if |x| < 1 (67)

∇2p = 0 if |x| > 1 (68)

[p] = 0 if |x| = 1 (69)

[∇p · n] = −2 if |x| = 1 (70)
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Traditional Stencil
∆x `∞ error
0.16 0.647074
0.08 0.540950
0.04 0.458996

order 0.248

New (1st Order) Stencil
∆x `∞ error
0.16 0.244280
0.08 0.101704
0.04 0.0492541

order 1.16

New (Higher Order) Stencil
∆x `∞ error
0.16 0.0401866
0.08 0.00830349
0.04 0.00312614

order 1.84

Table 3 Comparison of the [D∇p · n] stencil for the traditional (left) and new first-
order (middle) and higher-order (right) methods on Example 3.

p = 0 if x ∈ ∂ ([−2, 2]× [−2, 2]) , (71)

whose solution is

p(x, y) =

{
1− x2 − y2 if |x| ≤ 1

0 else.
(72)

Due to the jump boundary condition, this problem is sensitive to the dis-

cretization of the discontinuous source term: error in the numerical integral

of the source term inside |x| ≤ 1 will vertically shift the quadratic (interior)

part of the solution, and due to the coupling of the interior and exterior nor-

mal derivatives, error in the source term will lead to error in the exterior

region as well. We treat the discontinuous source term by solving

0 = ∇2p + 4 H(−φ), x ∈ [−2, 2]× [−2, 2], (73)

and we discretize H with a numerical Heaviside function H̃. See Appendix A

for further discussion on the choice of H̃.

Notice that this solution has no jump in the tangential derivative. Nonethe-

less, the traditional normal jump stencil (again, as stabilized in [40]) yields

sub-first-order convergence (left part of Table 3), whereas our new stencil is

first-order accurate (middle part of Table 3), and the higher-order method

is 2.65-order accurate. Thus, we can see that the failure of the traditional

[D∇p · n] stencil to properly separate the normal and tangential jumps de-

grades the accuracy of the entire solution, even in the absence of a tangential

derivative jump.

4.2 Convergence of the Overall Method

We examined the convergence of the overall method by studying a drop moving

under Hele-Shaw-type flow in an heterogeneous medium. Let Σ be the boundary

of a circle of radius 1 centered at
(
5
√

2, 5
√

2
)
.

We represent Σ as the zero contour of a level set function φ on the computa-

tional domain D = [0, 10] × [0, 10] containing both Ω = {x ∈ D : φ(x) < 0} and

its complement Ωc = {x ∈ D : φ(x) > 0}.
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The drop has normal velocity

V = −µ∇P · n if x ∈ Σ, (74)

which we implement in the level set context as

φt + Ṽ |∇φ| = 0, (75)

where Ṽ is the normal extension of the velocity off of Σ that we described in [38].

The pressure P satisfies

0 = ∇ · (µ∇P ) + H(−φ) if x ∈ Ω ∪Ωc (76)

[P ] = κ if x ∈ Σ (77)

[µ∇P · n] = 0 if x ∈ Σ (78)

(79)

with

µ = η + (1− η)e
−1.5

(√
x2+y2−5

√
2
)8

if x ∈ D (80)

η = 0.0001, (81)

and with boundary conditions

P ≡ 0 on ∂D. (82)

See Figure 8 for a plot of the permeability µ. Note that this models the growth

of a drop of incompressible fluid in a heterogeneous domain, where fluid is added

at a constant rate throughout the drop domain via the Heaviside source term

H(−φ).

We chose three spatial resolutions: ∆x = ∆y = 0.20 (low resolution),

∆x = ∆y = 0.10 (medium resolution), and ∆x = ∆y = 0.05 (high resolu-

tion). We used the discrete numerical Heaviside function that we describe in

Appendix A. We used a simple, first-order forward Euler time discretization with

CFL condition

∆t ≤ max

(
∆x

2max |V | , 0.05

)
. (83)

and fifth-order WENO for V |∇φ|. As in [36,38], we used Gaussian filtering to

attain a first-order CFL stability condition while maintaining accuracy. In these

simulations, we used a smoothing parameter (standard deviation) of σ = 2∆x =

0.40 for low resolution, σ = 3∆x = 0.30 for medium resolution, and σ = 4∆x =

0.15 for high resolution.

We calculated the order order of convergence (of the level set function φ) at

times t ∈ {0.10, 0.20, 0.30, 0.40, 0.50} according to (58). Due to the small time

step, the time error is small and is consequently dominated by the spatial error.

The average order of convergence was 1.86. See Table 4. We shall discuss the

behavior of the solution in Section 5.1.
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t ||φ0.2 − φ0.1||∞ ||φ0.1 − φ0.05||∞ order

0.1 0.0504799 0.0184189 1.45
0.2 0.0946371 0.0179485 2.40
0.3 0.0665503 0.0396410 0.747
0.4 0.130442 0.0342100 1.93
0.5 0.231275 0.0335707 2.78

average order of convergence 1.86

Table 4 Convergence of the Overall Method

Fig. 8 Permeability µ for the convergence example.

5 Numerical Examples

5.1 Hele-Shaw-type Flow in Heterogeneous Media

We solved the Hele-Shaw-type problem from the overall convergence study with

∆x = ∆y = 0.10, D = [0, 10] × [0, 10], and the permeability µ shown in Figure

8 until t = 1.8. The solution is plotted in 0.20 time increments in Figure 9. As

volume is added to the drop Ω (via the Heaviside source term in the pressure

equation), pressure builds inside the drop that pushes the boundary Σ outward

and causes the region Ω to grow. Because the permeability µ varies between

0.0001 and 1 throughout the domain, the drop grows preferentially inside the

region where µ ∼ 1. See Figure 9. Because volume is added at a constant rate

throughout the drop, the rate of growth is proportional to the volume of the

drop; this can be observed as an increasing distance between solution curves.
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Fig. 9 Outward growth of the medium-resolution (∆x = ∆y = 0.10) solution in t = 0.20
increments for the convergence example.

5.2 Tumor Growth in Heterogeneous Tissues

We now demonstrate our technique by applying it to a nonlinear tumor growth

problem. Let φ be a level set function whose zero contour denotes the boundary

Σ of an avascular tumor Ω = Ω(x, t) growing into a surrounding, non-cancerous

tissue Ωc = Ωc(x, t). This models the early stage of in vivo growth before the

onset of angiogenesis. We take our computational domain D to be a rectangular

region that fully contains Ω and Ωc; note that D = Ω ∪Ωc.

Let c denote the non-dimensionalized nutrient concentration within the com-

putational domain, scaled by the far-field nutrient value in well-vascularized,

non-pathological tissue. We scale space by the oxygen diffusional length scale

L ≈ 200 µm. Outside the tumor, the blood vasculature (with density B) delivers

nutrient, which diffuses into the tumor and is consumed by proliferating cells. As

the tumor grows, less nutrient reaches the interior, until it drops to a level cH

where tumor cells become hypoxic. The hypoxic tumor cells become quiescent

and consume less nutrient. If the tumor continues to grow and the interior nutri-

ent level drops further below a critical threshold cN , the tumor cells begin to die

(necrose). When cells necrose, they release their cellular contents, which are both

oxygen-reactive (e.g., see [31,20]) and growth-inhibiting. These processes can be

modeled as

0 = ∇ · (D∇c)− λc(x, c)c + λc
bulk(1− c)B(x)H(φ) if x ∈ Ω (84)

∇c · n = 0 if x ∈ ∂D, (85)

where B is the pre-existing blood vessel density, λc
bulk is the nutrient delivery rate

in the pre-existing blood vasculature, D is the nutrient diffusivity, and λc(x, c)

is chosen to combine the rates of nutrient uptake (in the viable and hypoxic
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portion of the tumor) and decay (in the necrotic portion of the tumor); we assume

no nutrient uptake in the non-cancerous tissue Ωc. Normalized by the nutrient

uptake rate in the viable region, the uptake and decay function is modeled by

λc(x, c) =





0 if x ∈ Ωc

1 if x ∈ Ω and 1 ≥ c > cH

q(c) if x ∈ Ω and cH ≥ c > cN

λc
N if x ∈ Ω and cN ≥ c.

(86)

Here, λc
N is the rate of nutrient decay in the necrotic core, and q(c) is a polynomial

that smoothly connects regions and is chosen to satisfy

q(cH) = 1

q′(cH) = 0

q
( cH + cN

2

)
= λc

H (87)

q(cN ) = λc
N

q′(cN ) = 0, (88)

where λc
H is the rate of nutrient uptake by hypoxic cells. In our numerical ex-

ample, we shall take cH = 0.3, cN = 0.2, λc
H = 0.5, and λc

N = 0.25. In this

case,

q(c) = −20000c4 + 18500c3 − 6275c2 + 930c− 50.75. (89)

Notice that this makes our nutrient equation nonlinear.

We model the tumor as an incompressible fluid growing in a porous medium,

and so the local rate of change in tumor volume is given by ∇ · u, where u

is the cellular velocity field. Proliferating tumor cells in the viable rim of the

tumor generate an internal biomechanical pressure p that increases the tumor

volume (at a rate proportional to the nutrient level c) and pushes the tumor

boundary outward with normal velocity V via Darcy’s law (u = −µ∇p). The

enzymatic breakdown of necrotic tumor tissue is modeled by a local decrease in

the pressure that reduces volume (at a constant rate GN ) and slows growth. Cell-

to-cell adhesion is modeled as a surface tension (curvature) boundary condition

on Σ. The non-cancerous tissue in Ωc is also assumed to be affected by the

tumor-generated pressure, but the cells in Ωc do not proliferate. We model the

pressure by

∇ · u = −∇ · (µ∇p) =





0 if x ∈ Ωc

c if x ∈ Ω and c > cH

0 if x ∈ Ω and cH ≥ c > cN

−GN if x ∈ Ω and cN ≥ c

(90)

with boundary conditions

[p] =
1

G
κ if x ∈ Σ (91)

[µ∇p · n] = 0 if x ∈ Σ. (92)
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We model the normal velocity of the tumor boundary by Darcy’s law:

V = −µ∇p · n if φ(x) = 0. (93)

We choose boundary conditions on p along ∂D to suit the problem under

study. Here, G that characterizes the tumor aggressiveness (the rate of prolif-

eration compared to the cell-cell adhesion time scale), GN is a parameter that

governs the rate of tumor cell breakdown in necrotic regions, and µ is the cellular

mobility. This tumor growth model is an extension of current models given in

[15], [36], [38], [57], [39] and [40], and will be further extended and investigated

in future work [35,6].

We simulated this tumor system on a computational domain

D = [0, 50] × [0, 50] with ∆x = ∆y = 0.10, with tissue and tumor properties

chosen to model the evolution of glioblastoma in brain tissue. Because the oxy-

gen diffusional length scale is approximately 200 µm, this corresponds to an

approximately 1 cm square of simulated brain tissue. We set G = 20, GN = 1,

λc
bulk = 1, cH = 0.3, cN = 0.2, and used q(c) as given in (89). We model growth

in a complex, heterogeneous brain tissue as shown in the first frame in Figure

10. In the white region, µ = 0.0001, D = 0.0001, and B = 0, which models a

rigid material such as the skull. In the black regions, µ = 10, D = 1, and B = 0,

which models an incompresible fluid (cerebrospinal fluid). The light and dark

gray regions model tissues of differing biomechanical properties (white and gray

matter). In the light gray regions, µ = 1.5, D = 1, and B = 1; in the dark gray

regions, µ = 0.5, D = 1, and B = 1. The red region (color images are available on-

line) denotes the initial shape and position of the simulated tumor. We smoothed

µ, B, and D using a Gaussian filter with standard deviation σ = 3∆x = 0.3

to satisfy smoothness requirements of the reaction-diffusion equations. We used

(linear) extrapolation boundary conditions on the pressure along x = 0, y = 0,

and y = 50 to simulated growth into a larger, unshown tissue, and we set p = 0

along the rigid boundary at x = 50.

We simulated from t = 0 to t = 60. Using a 3.3 GHz Pentium 4 workstation

and a C++ implementation, the 501×501 simulation required under 24 hours to

compute. Because our (mitosis) time scale ranges from approximately 18 to 36

hours for this problem, this corresponds to 45 to 90 days of growth. We plot our

solution in t = 5.0 (approximately 5 days) increments in Figures 10 and 11. In

those plots, red regions correspond to viable tumor tissue (where c > cH), blue

regions denote hypoxic tumor tissue (cH ≥ c > cN ), and brown regions denote

necrotic tumor cells (cN ≥ c). (Please see the online version of the article for

color figures.) In this simulation, the tumor grows rapidly until the nutrient level

drops below cH = 0.30 (see t = 5.0), at which time a large portion of the tumor

becomes hypoxic. The tumor continues to grow at a slower rate until the interior

of the tumor becomes necrotic. (See t = 10.0.) This causes non-uniform volume

loss within the tumor and contributes to morphological instability. We note that

because the biomechanical responsiveness is continuous across the tumor bound-

ary and the microenvironment has a moderate nutrient gradient, this simulation
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corresponds to the border between the invasive, fingering growth regime and the

invasive, fragmenting growth regime that we investigated in [40].

However, additional effects can be seen that were not observed in the afore-

mentioned study. As the tumor grows out of the biomechanically permissive tis-

sue (light gray; µ = 1.5) and into the biomechanically resistant tissue (dark gray;

µ = 0.5), its rate of invasion into the tissue slows. (See t = 15 to 25.0.) This results

in preferential growth into the permissive (light gray) material, a trend which can

be clearly seen from t = 30.0 onward. When the tumor grows through the re-

sistive tissue (dark gray) and reaches the fluid (black), the tumor experiences a

sudden drop in biomechanical resistance to growth. As a result, the tumor grows

rapidly and preferentially in the 1/2 mm fluid structures that separate the tissue.

Such growth patterns are not observed when simulating homogeneous tissues.

Other observed differences are due to our new treatment of hypoxic (quies-

cent) tumor cells. Certain regions that we had previously classified as necrotic

(in [36,38–40]) are now treated as quiescent. As a result, tumor volume loss is re-

duced, and in particular, this may result in large hypoxic regions that have little

or no viable rim. Had these regions been treated as necrotic, the invasive fingers

would have been thinner, and the tumor may have fragmented. Therefore, the

separate treatment of the hypoxic regions can have a significant impact on the

details of the invasive morphology of the tumor. We shall investigate this effect

in greater detail in future work.

6 Conclusions and Future Work

In this paper, we built upon our earlier work from [36], [38], [39] and [40] to de-

velop an accurate ghost cell/level set technique for evolving interfaces whose nor-

mal velocity is given by the normal derivatives of solutions to linear and nonlin-

ear quasi-steady reaction-diffusion equations with curvature-dependent boundary

conditions. The technique is capable of describing complex morphologies evolving

in heterogeneous domains. The algorithm involved several new developments, in-

cluding a new ghost cell technique for accurately discretizing jumps in the normal

derivative without smearing jumps in the tangential derivative, a new adaptive

solver for linear and nonlinear quasi-steady reaction-diffusion problems (NAGSI),

an adaptive normal vector discretization for interfaces in close contact, and an

accurate discrete approximation to the Heaviside function.

We demonstrated the accuracy, efficiency, and capabilities of the method on

a variety examples. For instance, we considered a model of solid tumor growth

consisting of a fully nonlinear reaction-diffusion equation for the nutrient and a

pressure equation that includes geometric boundary conditions. We solved the tu-

mor system in a heterogeneous environment including complex structures (white

matter, gray matter, cerebrospinal fluid, and bone), much like human brain tis-

sue. We observed growth morphologies that were highly dependent upon the

variations in the cellular mobility and the nutrient delivery–an effect observed in
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Fig. 10 Long-time tumor simulation from t = 0.0 days (top left) to t = 35.0 days
(bottom right) in 5 day increments. The color version of this figure is available online.
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Fig. 11 Long-time tumor simulation (continued) from t = 40.0 days (top left) to
t = 60.0 days (bottom) in 5 day increments. The color version of this figure is available
online.

real tumor growth. The accuracy of the algorithm is a key step in the develop-

ment of a new generation of predictive tumor growth models that can eventually

lead to clinical applications. In future work, we will conduct a more thorough

study of tumor growth in inhomogeneous tissue, investigate models of tumor-

microenvironment coupling that include active remodeling of the tissue by the

tumor [35], and study the effects of coupling tumor growth to complex models of

angiogenesis with Alexander Anderson, Mark Chaplain, Steven McDougall, and

Vittorio Cristini.
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A A Simple Numerical Heaviside Function

Given a discretized domain with grid points {xi}m
i=0×{yj}n

j=0 and a function f defined

on those node points, we wish to define a numerical Heaviside function H̃(f) = Hi,j(f)
on the computational node points which approximates the true Heaviside function

H(f) =

{
0 if f < 0
1 if f ≥ 0

(94)

and such that

Hi,j(f)∆x∆y ≈
∫ xi+

1
2 ∆x

xi− 1
2 ∆x

∫ yj+ 1
2 ∆y

yj− 1
2 ∆y

H (f(s, t)) ds dt, (95)

i.e., the numerical Heaviside function approximates the percentage of the computational
node centered at (xi, yj) that is occupied by the region {x : f(x) > 0}. We accomplish
this by examining the value of f at (i, j) and the eight surrounding computational nodes:

Hi,j(f) =

i+1∑

s=i−1

j+1∑

t=j−1

w|s−i|,|t−j|H(fi,j), (96)

where the weights are given by the relative areas of the sub-grid sections in Figure 12,
and can be written as

wm,n =
22−m−n

16
=





1
16

if m = 1 and n = 1

1
8

if m = 1 and n = 0

1
8

if m = 0 and n = 1

1
4

if m = 0 and n = 0.

(97)

See Figure 12. For the function in the figure, Hi,j(f) = 11
16

.
To study the accuracy of this numerical Heaviside function, we calculated the order

of the convergence for third ghost cell method example in Section 4.1 using our discrete
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Fig. 12 The weights w used for computing our numerical Heaviside function at a node
(i, j).

Heaviside function. For comparison, we also considered the Heaviside function from
Sussman and Fatemi [52]

H̃δ(f) =





0 if f < −δ

1
2

[
1 + f

δ
+ 1

π
sin

(
πf
δ

)]
if |f | ≤ δ

1 if f > δ

(98)

with δ = ∆x, and the Heaviside function function in recent work by Engquist et al. [16]:

H̃δ(f) =





0 if f ≤ −δ
1
2

(
1 + f

δ

)
if |f | < δ

1 if f ≥ δ,

(99)

where we used δ = ∆x.
The results, given in Table 5, demonstrate approximately first-order convergence of

the problem using the Sussman and Fatemi Heaviside function (left part of Table 5),
slightly better than first-order convergence for the Engquist et al. Heaviside function
(middle part of Table 5), and near-second-order convergence for our discrete Heaviside
function (right part of Table 5). The key to this problem is the accurate approximation
of the source term without smearing the integral of the source outside of the circle
|x| ≤ 1. All three methods approximate the area of the circle to second-order accuracy
(not shown), but only the discrete Heaviside approximation was designed to accurately
approximate the area of the region locally as well as globally.
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