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Abstract

In this paper, we present and investigate a model for solid tumor growth that in-
corporates features of the tumor microenvironment. Using analysis and nonlinear
numerical simulations, we explore the effects of the interaction between the genetic
characteristics of the tumor and the tumor microenvironment on the resulting tu-
mor progression and morphology. We find that the range of morphological responses
can be placed in three categories that depend primarily upon the tumor microenvi-
ronment: tissue invasion via fragmentation due to a hypoxic microenvironment; fin-
gering, invasive growth into nutrient-rich, biomechanically unresponsive tissue; and
compact growth into nutrient-rich, biomechanically responsive tissue. We found that
the qualitative behavior of the tumor morphologies was similar across a broad range
of parameters that govern the tumor genetic characteristics. Our findings demon-
strate the importance of the impact of microenvironment on tumor growth and
morphology and have important implications for cancer therapy. In particular, if a
treatment impairs nutrient transport in the external tissue (e.g., by anti-angiogenic
therapy), increased tumor fragmentation may result, and therapy-induced changes
to the biomechanical properties of the tumor or the microenvironment (e.g., anti-
invasion therapy) may push the tumor in or out of the invasive fingering regime.
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1 Introduction

Cancer is a fundamental scientific and societal problem, and in the past few
decades, vast resources have been expended in an effort to understand the root
causes of cancer, to elucidate the intricacies of cancer progression, and to de-
velop effective prevention and treatment strategies. In this paper, we present
and investigate a model for solid tumor growth that incorporates features of
the tumor microenvironment. Using analysis and nonlinear numerical simula-
tions, we explore the effects of the interaction between the genetic character-
istics of the tumor and the tumor microenvironment on the resulting tumor
progression and morphology. Implications for cancer therapies are discussed.

Cancer is marked by several increasingly aggressive stages of development.
The first stage, carcinogenesis, is believed to be characterized by a sequence
of genetic mutations that promote growth (i.e., acquisition of oncogenes), cir-
cumvent apoptosis (i.e., inactivation or loss of tumor suppressor genes), or
hinder DNA repair processes, thereby increasing the probability of acquir-
ing oncogenes or inactivating tumor suppressor genes. (e.g. see Hanahan and
Weinberg (2000) and Lehmann (2001).) In the second stage of development,
avascular growth occurs as the cancer cells proliferate and form an in situ
cancer. The local production of matrix-degrading enzymes and subsequent
degradation of the extracellular matrix (ECM) may also play a role in pro-
viding room for the tumor to expand into the surrounding tissue. (See Hotary
et al. (2003) and the discussion throughout Anderson (2005).) Since the tu-
mor lacks a vasculature, nutrients (e.g., glucose and oxygen) are received only
by diffusion through the surrounding tissue. As the tumor grows, less nutri-
ent reaches the center of the tumor. Interior cells become hypoxic, begin to
die (necrose), and are broken down by enzymes. As cell death in the tumor
interior balances with cell proliferation on the boundary, a spherical tumor
may reach a diffusion-limited size, usually on the order of 2-4 mm. However, if
the tumor boundary acquires an irregular shape, additional nutrient becomes
available to the tumor interior due to the increased surface area to volume
ratio, and continued growth may result. Indeed, there are now a number of
in vitro studies in which complex growth morphologies have been observed.
(e.g. see Bredel-Geissler et al. (1992), Mueller-Kleiser (1997), Hedlund et al.
(1999), Enmon Jr. et al. (2001), and Frieboes et al. (2006b).)

The next stage of tumor growth, angiogenesis, is characterized by the devel-
opment of a tumor-induced neovasculature that grows from the main circula-
tory system toward the tumor in response to the imbalance of pro-angiogenic
growth factors that are released by hypoxic cells in the tumor (e.g., vascular
endothelial cell growth factor, or VEGF) relative to anti-angiogenic growth
factors (e.g., angiostatin) present in the tumor microenvironment (Carmellet
and Jain, 2000). In the final stage of tumor progression, vascular growth, the

1



tumor is supplied with nutrients from the newly-developed, although typi-
cally inefficient vasculature (Jain, 1990; Haroon et al., 1999; Hashizume et al.,
2000). Additional mutations and epigenetic events may occur that lead to in-
creased cellular motility and greater production of matrix degrading enzymes
that degrade the ECM. This can lead to invasion, where either individual or
collections of cancerous cells protrude and/or separate from the tumor and
migrate through the surrounding tissue, or metastasis, where the invading tu-
mor cells (or cell collections) enter the blood vasculature and/or lymphatic
system and travel to distant locations.

The tumor microenvironment plays a crucial role in these processes. (e.g., see
Hockel et al. (1996), Enam et al. (1998), Schmeichel et al. (1998), Sanson et al.
(2002), and Pennacchietti et al. (2003).) For example, hypoxic microenviron-
ments lead to the upregulation of HIF-1 target genes in both tumor cells and
endothelial cells, including those responsible for the secretion of angiogenic
growth factors and matrix degrading enzymes, metabolic changes such as in-
creased glycolysis, and decreased cell-cell and cell-matrix adhesion (Kaur et al.,
2005; Erler et al., 2006; Pouysségur et al., 2006). These conditions are associ-
ated with increased tumor invasiveness (Kaur et al., 2005; Erler et al., 2006;
Pouysségur et al., 2006) and poor patient outcome (Hockel et al., 1996). How-
ever, the effects of the interaction between intra- and extratumoral processes
on tumor progression and morphology are not well understood. Mathematical
modeling has the potential to provide insight into these interactions though
systematic studies of fundamental constituent processes.

Over the past ten years, the interest in the mathematical modeling and nu-
merical simulation of cancer has increased dramatically. (See the reviews by
Adam (1996), Bellomo et al. (2003), and Araujo and McElwain (2004a), Byrne
et al. (2006), Sanga et al. (2006), and Quaranta et al. (2005).) A variety of
modeling strategies is now available, each of which is well-suited to investigate
one or more aspect of cancer. Cellular automata and agent-based modeling,
where individual cells are simulated and updated based upon a set of biophys-
ical rules, are particularly useful for studying carcinogenesis, natural selection,
genetic instability, and interactions of individual cells with each other and the
microenvironment. Because these methods are based on a series of rules for
each cell, it is straightforward to translate biological processes (e.g., complex
mutation pathways) into model rules. On the other hand, these models can
be difficult to study analytically, and the computational cost increases rapidly
with the number of cells modeled. Because a 1 mm tumor spheroid has over
500,000 cells, these methods can quickly become unwieldy when studying tu-
mors of any significant size. For some examples of cellular automata modeling,
see Anderson (2005), Alarcón et al. (2003), and Mallett and de Pillis (2006),
and see Mansury et al. (2002) and Abbott et al. (2006) for examples of agent-
based modeling.
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In larger-scale systems where the cancer cell population is on the order of
1,000,000 or more, continuum methods provide a good modeling alternative.
Early work (e.g. Greenspan (1976), Byrne and Chaplain (1996a), Byrne and
Chaplain (1996b)) used ordinary differential equations (ODE) to model cancer
as a homogeneous population, as well as partial differential equation (PDE)
models restricted to spherical geometries. Linear and weakly nonlinear analy-
ses have been performed to assess the stability of spherical tumors to asymmet-
ric perturbations (e.g., Chaplain et al. (2001), Byrne and Matthews (2002),
Cristini et al. (2003), and Li et al. (2006), and discussed in the reviews by
Araujo and McElwain (2004a) and Byrne et al. (2006)) as a means to char-
acterize the degree of aggression. Various interactions of the tumor with the
microenvironment, such as stress-induced limitations of tumor growth, have
also been studied in this context (e.g., Jones et al. (2000), Ambrosi and Mol-
lica (2002, 2004), Roose et al. (2003), Araujo and McElwain (2004b, 2005),
and Ambrosi and Guana (2006)). Most of the previous modeling has consid-
ered single-phase tumors. More recently, multiphase mixture models have been
developed to provide a more detailed account of tumor heterogeneity. (e.g.,
see the work by Ambrosi and Preziosi (2002), Byrne and Preziosi (2003), and
Chaplain et al. (2006).)

Very recently, nonlinear modeling has been performed to study the effects of
shape instabilities on avascular, angiogenic, and vascular solid tumor growth.
Cristini, Lowengrub, and Nie used boundary integral methods and performed
the first fully nonlinear simulations of a continuum model of tumor growth
in the avascular and vascularized growth stages with arbitrary boundaries
(Cristini et al., 2003). This work investigated the nonlinear regime of shape
instabilities and predicted the encapsulation of external, non-cancerous tis-
sue by morphologically unstable tumors. Interestingly, shape instabilities were
found to occur only in the diffusion-dominated, avascular regime of growth.
The effect of the extratumoral microenvironment was not considered.

Zheng et al. (2005) extended this model to include angiogenesis and an ex-
tratumoral microenvironment by developing and coupling a new level set im-
plementation with a hybrid continuous-discrete angiogenesis model originally
developed by Anderson and Chaplain (1998). Zheng et al. investigated the non-
linear coupling between growth and angiogenesis. As in Cristini et al. (2003), it
was found that low-nutrient (e.g. hypoxic) conditions may lead to instability.
Zheng et al. did not fully investigate the interaction between the growth pro-
gression and the tumor microenvironment, but their work served as a building
block for recent studies of the effect of chemotherapy on tumor growth by
Sinek et al. (2004) and for studies of morphological instability and invasion by
Cristini et al. (2005) and Frieboes et al. (2006b). Hogea et al. (2006) have also
begun investigating tumor growth and angiogenesis using a level set method
coupled with a continuous model of angiogenesis. In addition, Frieboes et al.
(2006a) and Wise et al. (2006a,b) have recently developed a diffuse interface
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implementation of solid tumor growth to study the evolution of multiple tumor
cell species during progression.

In Macklin (2003) and Macklin and Lowengrub (2005, 2006), we also consid-
ered a level set-based extension of the tumor growth model that was previ-
ously investigated by Cristini et al. (2003) (described above). In these works,
we developed new, highly-accurate numerical techniques to solve the resulting
system of partial differential equations in a moving domain. These numerical
methods are more accurate than those used by Zheng et al. (2005) and Hogea
et al. (2006). Using these methods, we modeled tumor growth under a variety
of conditions and investigated the role of necrosis in destabilizing the tumor
morphology. We demonstrated that non-homogeneous nutrient diffusion in-
side the tumor leads to heterogeneous growth patterns that, when interacting
with cell-cell adhesion, cause sustained morphological instability during tumor
growth, as well as the repeated encapsulation of noncancerous tissue by the
growing tumor.

In this paper, we extend the tumor growth models considered by Cristini,
Lowengrub, Nie, Macklin, Zheng, and others (for example, Cristini et al.
(2003), Macklin and Lowengrub (2005), and Zheng et al. (2005), all of which
reformulated several classical models (Greenspan, 1976; McElwain and Morris,
1978; Adam, 1996; Byrne and Chaplain, 1996a,b; Chaplain, 2000)) to include
more detailed effects of the microenvironment by allowing variability in nutri-
ent availability and the response to proliferation-induced mechanical pressure
(which models hydrostatic stress) in the tissue surrounding the tumor. In our
model, the region surrounding the tumor aggregates the effects of ECM and
noncancerous cells, which we characterize by two nondimensional parameters
that govern the diffusional and biomechanical properties of the tissue. Fluids
are assumed to move freely through the interstitium and ECM, and so such
effects are currently neglected. The external nutrient and pressure variations,
in turn, affect the evolution of the tumor in our model. Due to the computa-
tional cost of three-dimensional simulations, we shall focus our attention on
two-dimensional tumor growth, although the model we develop applies equally
well in three dimensions. In Cristini et al. (2003), it was found that the base-
line model predicts similar morphological behavior for two-dimensional and
three-dimensional tumor growth. This has been borne out by recent three-
dimensional simulations by Li et al. (2006). We note that two-dimensional
tumor growth may be well-suited to studying cancers that spread over large
areas but are relatively thin, such as melanoma.

Using our model, we shall conduct a systematic investigation of the effect
of the microenvironment on tumor growth over a broad range of biophysical
parameters. In the process, we shall characterize the behavior predicted by
the model and discuss the implications for cancer treatment. We note that
by matching the results to known morphologies, one may infer the range of
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validity of the model and obtain estimates of parameter values; we discuss
this at the end of this paper. These simulations are difficult and require the
development of accurate numerical techniques, which we present in this paper.

We find that the range of morphological responses can be placed in three cat-
egories that depend primarily upon the tumor microenvironment. In nutrient-
poor microenvironments, tumors tend to break into small fragments and in-
vade the surrounding tissue, regardless of the mechanical properties of the sur-
rounding tissue. When placed in nutrient-rich tissue, the tumor morphology
depends upon the biomechanical characteristics of the tissue. Tumors grow-
ing into mechanically unresponsive tissue develop buds that grow into long,
invasive fingers. Tumors growing into softer, mechanically responsive tissue
develop buds that do not grow, but rather connect with neighboring buds
to capture external ECM. The overall morphology remains compact, with a
large central abscess containing encapsulated ECM, fluid, and cellular debris
similar to a necrotic core. We found that the qualitative behavior of the tu-
mor morphologies was similar across a broad range of parameters that govern
the tumor genetic characteristics. Our findings demonstrate the importance
of the impact of microenvironment on tumor growth and morphology, and
this has implications for cancer therapy: the impact of a therapy on the mi-
croenvironment may either positively or negatively impact the outcome of
the treatment. A treatment that impairs nutrient delivery in the host tissue
(e.g., using anti-angiogenic drugs) may increase tumor fragmentation, whereas
a treatment that normalizies nutrient delivery may reduce or prevent tumor
fragmentation. Therapies that affect the biomechanical responsiveness of the
tumor or surrounding host tissue (e.g., anti-invasion therapy that alters cell-
cell or cell-matrix adhesion) may either cause or prevent invasive fingering.

Using our model, we also investigate the internal structure of the tumors, in-
cluding the volume fractions of the necrotic and viable portions of the tumor.
We find that even during growth, the internal structure tends to stabilize due
to apparent local equilibration of the tumors as characteristic feature sizes
and shapes emerge. We also find that whereas the tumor morphology depends
primarily upon the microenvironment, the internal structure is most strongly
influenced by the genetic characteristics of the tumor, including resistence to
necrosis, the rate at which the necrotic core is degraded, and the apoptosis
rate. These results are not at all obvious from the examination of the model
and underlying hypotheses alone. By hypothesis, the microenvironment, tu-
mor genetics, and tumor morphology are all nonlinearly coupled. The tumor
genetics determine biophysical properties like growth rates, which, in turn, are
mediated by microenvironmental factors such as available nutrient supply. One
would then expect that the tumor genetics have a greater impact on tumor
morphology, and indeed, Cristini et al. (2003) found that the tumor genetics
completely determine the morphological behavior when the microenvironment
is not taken into account. While the important role of the microenvironment
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is consistent with experiments in the literature, the observed dominance of
the microenvironment in determining the morphology is intriguing. Likewise,
the weak dependence of the internal tumor structure on the microenvironment
and morphology is difficult to predict a priori. The model can be analyzed to
make this prediction for tumor spheroids, but such an analysis ignores vari-
ation in tumor morphology and does not lead to obvious conclusions for the
general case, where the morphology (and presumably volume) of the necrotic
core depends upon the morphology of the tumor boundary.

We note that while our model captures the basic features of tumor growth,
it does not currently incorporate the effects of elastic and residual stress,
ECM degradation, signaling by promoters and inhibitors, angiogenesis, and
competition between tumor subpopulations. These effects represent model re-
finements that can readily be added to our current modeling framework. We
shall discuss our plans to address these and other refinements in the closing
remarks in Section 5.

The contents of this paper are as follows: in Section 2, we describe the tu-
mor growth and microenvironment models, nondimensionalize the resulting
systems, and present an analysis of the internal structure of tumor spheroids
that will be helpful in understanding non-spherical growth. In Section 3 and
Appendix A, we give the important features of our level set/ghost fluid method
and extend our technique to solve the Poisson-like equations on the full do-
main. In Section 3.2, we present a convergence study to demonstrate the accu-
racy of our technique. In Section 4, we present the results of a parameter study
of tumor growth in a variety of microenvironments, categorize the characteris-
tic tumor morphologies, investigate the causal link between microenvironment
and tumor morphology, and analyze the link between the internal tumor struc-
ture and the tumor genetic parameters. In Section 5 and throughout the text,
we discuss the clinical implications of the behavior predicted by our model.
In Section 5, we also summarize our work, address known deficiencies in the
model, and discuss ongoing modeling refinements.

2 Governing Equations

We study and extend a model for solid tumor growth that applies equally
well in two and three dimensions (Cristini et al., 2003; Macklin, 2003; Macklin
and Lowengrub, 2005; Zheng et al., 2005), which is a reformulation of several
classical models (Greenspan, 1976; McElwain and Morris, 1978; Adam, 1996;
Byrne and Chaplain, 1996a,b; Chaplain, 2000). We model an avascular tumor
occupying a volume Ω(t) with boundary ∂Ω, which we denote by Σ. The tumor
is composed of a viable region ΩV where nutrient (e.g., oxygen and glucose)
levels are sufficient for tumor cell viability and a necrotic region ΩN where
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tumor cells die due to low nutrient levels and are broken down by enzymes.
Note that Ω = ΩV ∪ ΩN .

The growing tumor also interacts with the surrounding microenvironment in
the host tissue; we denote this region by ΩH . The region ΩH contains extra-
cellular matrix (ECM) and a mixture of noncancerous cells, fluid, and cellular
debris. As observed in Cristini et al. (2003), Macklin (2003), and Macklin and
Lowengrub (2005), the growing tumor may encapsulate regions of ΩH , and
so these regions may lack living noncancerous cells. (See Figure A.1.) Here-
after, we shall refer to ΩH as noncancerous tissue, although our model applies
equally well to the case in which ΩH contains only ECM, fluid, and cellular
debris.

2.1 Nutrient Transport

We describe the net effect of nutrients and growth-promoting and inhibiting
factors with a single nutrient c. In the viable region of the tumor ΩV , the
nutrient diffuses and is uptaken by proliferating cells. Letting D̃ = D̃(x, t)
denote the nutrient diffusivity, and defining λV to be the nutrient uptake rate
by proliferating tumor cells, then the nutrient is governed by the reaction-
diffusion equation

∂c

∂t
= ∇ ·

(
D̃∇c

)
− λV c, x ∈ ΩV . (1)

Taking λV to be constant, note that the total nutrient uptake λV c decreases
with c. This models the fall in metabolic and mitotic behavior (i.e., quiescence)
as the tumor cells become hypoxic. In future work, we shall explicitly model
the quiescent tumor cell population, as these cells are particularly important
when considering the efficacy of therapy (Konopleva et al., 2002; Ravandi and
Estrov, 2006).

In the necrotic region ΩN , there is little or no nutrient uptake, as there are few
proliferating cells. However, necrosing cells release their intracellular contents,
which are both cytotoxic/growth-inhibiting (Freyer, 1988; Festjens et al., 2006)
and oxygen-reactive (e.g., necrotic tissue rapidly reacts with reintroduced oxy-
gen to form reactive oxygen species that react with and damage biological
molecules (Kloner and Jennings, 2001; Galaris et al., 2006)). Recalling that
the general nutrient c models the net effect of nutrients and growth-promoting
and inhibiting factors, we can model these effects with a nutrient decay rate
λD. Thus,

∂c

∂t
= ∇ ·

(
D̃∇c

)
− λDc, x ∈ ΩN . (2)
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We assume that tumor cells uptake nutrient at a greater rate than noncancer-
ous cells, and so nutrient uptake is negligible in ΩH (Vaupel et al., 1989;
Garber, 2004; Esteban and Maxwell, 2005; Ramanathan et al., 2005). Fur-
thermore, we assume that there is little cellular debris in ΩH and thereby no
nutrient decay in that region. Therefore,

∂c

∂t
= ∇ ·

(
D̃∇c

)
, x ∈ ΩH . (3)

Summarizing, the nutrient satisfies

∂c

∂t
= ∇ ·

(
D̃∇c

)
− λ(x, t)c, x ∈ Ω ∪ ΩH (4)

where

λ(x, t) =





0 x ∈ ΩH

λV x ∈ ΩV

λD x ∈ ΩN .

(5)

Because nutrient diffusion, uptake, and decay all occur much more quickly
than tumor growth, the quasi-steady assumption applies and ∂c/∂t ≈ 0.

The tumor cells become necrotic when the nutrient falls below a critical value
cN for cellular viability. Therefore, the viable and necrotic regions can be
identified by the nutrient concentration:

ΩV = {x ∈ Ω : c ≥ cN}
ΩN = {x ∈ Ω : c < cN} . (6)

By equation (6), the morphology and location of ΩN depends upon c, i.e.,
ΩN = ΩN(c). Because λ varies within the tumor based upon the position of
the necrotic core ΩN(c), we see that λ = λ(x, t, c), which makes the nutrient
equation nonlinear. However, we can linearize the problem by setting λD = λV ,
i.e., λ ≡ λV throughout the tumor. This modeling convenience allows us to
solve for the nutrient concentration using linear solvers. In test simulations
with nonlinear solvers that we are currently developing (not shown), we have
found that this assumption does not significantly affect the qualitative features
of the necrotic core morphology and the overall tumor progression.

We assume that the nutrient and nutrient flux are continuous across the tumor
boundary Σ:
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[c] = 0 x ∈ Σ (7)[
D̃∇c · n

]
= 0 x ∈ Σ, (8)

where n is the outward unit normal vector.

Here, for any quantity q(x) and any x ∈ Σ, we define

[q (x)] = q (x)
∣∣∣
Ω
− q (x)

∣∣∣
ΩH

= lim
Ω3y→x

q(y)− lim
ΩH3y→x

q(y) (9)

to be the jump in q across the boundary Σ.

Nutrient delivery by the blood vasculature and uptake by noncancerous cells
are assumed to be in balance outside of Ω ∪ ΩH . Therefore, we take

c ≡ c∞ x ∈ ∂ (Ω ∪ ΩH) (10)

on the far-field boundary.

In this paper, we shall consider the special case of avascular growth in piecewise
homogeneous tissue and assume D̃ ≡ DH in ΩH and D̃ ≡ DT in Ω, where DH

and DT are (generally different) constants.

2.2 Cellular Velocity Field

The cells and ECM in the host tissue ΩH and the viable tumor region ΩV

are affected by a variety of forces, each of which contributes to the cellular
velocity field u. The proliferating tumor cells in ΩV generate an internal (on-
cotic) mechanical pressure (hydrostatic stress) that also exerts force on the
surrounding noncancerous tissue in ΩH . Tumor and noncancerous cells and
the ECM can respond to pressure variations by overcoming cell-cell and cell-
ECM adhesion and moving within the scaffolding of collagen and fibroblast
cells (i.e., ECM) that provides structure to the host tissue. The ECM in ΩH

can deform in response to the pressure. Following previous work, we assume
constant cell density and model cellular motion within the ECM as incom-
pressible fluid flow in a porous medium. The response of the cells and the
ECM to the pressure is governed by Darcy’s law

u = −µ̃∇P x ∈ ΩV ∪ ΩH , (11)

where the cellular mobility µ̃ = µ̃(x) measures the overall ability of tissue to
respond to the pressure. We note that µ̃ also measures the permeability of the
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tissue to tumor cells. See Ambrosi and Preziosi (2002) and Byrne and Preziosi
(2003) for further motivation of this approach from a mixture modeling point
of view.

When tumor cells are in a state of hypoxia, cellular pathways that increase cell
migration may become activated (Hockel et al., 1996; Kaur et al., 2005; Lester
et al., 2005; Erler et al., 2006; Pouysségur et al., 2006). This may be modeled
by increasing the mobility µ̃ as the nutrient level decreases or as a tactic
response to nutrient gradients (Friedl and Wolf, 2003). In this paper, we shall
focus upon the effects of proliferative pressure only; the effects of increased
cellular motility in response to hypoxia will be considered in a future work
(Anderson et al., 2006).

The outward normal velocity V of the tumor boundary Σ is given by

V = u · n = −µ̃∇P · n, (12)

where n is the outward unit normal vector along Σ. We assume that the normal
velocity is continuous across the tumor boundary Σ, i.e., voids do not form
between the tumor and host tissue.

2.3 Proliferation, Apoptosis, and Necrosis

In the viable region ΩV , proliferation increases the number of tumor cells
and thus the volume occupied by the viable region. Apoptosis decreases the
total volume of ΩV at a constant rate λA. We assume that cell birth and
death are in balance in ΩH , and so there is no change in the volume in that
region. (Note that if there are no cells in ΩH , then there is no cell birth or
death, and the assumption still holds.) In fact, unvascularized tumors are
often hypoxic, leading to glycolysis in the tumor and acidosis (a reduced pH
level) in the surrounding healthy tissue (Gatenby and Gawlinski, 1996, 2003).
Noncancerous cells cannot survive in this condition, leading to an imbalance
in cell birth and death that results in a relative survival advantage for tumor
cells and a potential volume loss in ΩH when cells are present. This effect will
be considered in a future work.

Putting this together as in Cristini et al. (2003), the change in volume is

∇ · u =





0 x ∈ ΩH

bc− λA x ∈ ΩV .
(13)

Here, b is a constant related to the tumor cell mitosis rate.
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Throughout the necrotic core ΩN , the enzymatic breakdown of necrotic tumor
cells is assumed to decrease the tumor volume at a constant rate λN . This vol-
ume loss can be imposed via a nonlocal boundary condition on the boundary
ΣN of the necrotic core:

∫

ΣN

u · n ds =−
∫

ΣN

(µ̃∇P · n) ds

=−λN |ΩN | , (14)

where u · n is the limit from inside ΩV , and |ΩN | denotes the area of ΩN .

As a computational convenience, we can achieve the correct volume loss by
continuously extending the velocity u into ΩN . Instead of using (14), we define

∇ · u = −λN , x ∈ ΩN . (15)

We assume that voids do not form between the viable and necrotic regions.
Therefore, we choose our extension such that the normal velocity is continuous
across the necrotic boundary, i.e.,[u · n] = 0 across ΣN . We note that because
ΣN is determined by the nutrient level, it is not a material boundary and is
not advected by the velocity field u; the extension of the velocity field is used
solely to yield the correct volume change in the tumor necrotic core.

One way to attain this is to extend the pressure continuously into the necrotic
core as well, by taking

u=−µ̃∇P x ∈ ΩN

[P ] = 0 x ∈ ΣN

[−µ̃∇P · n] = 0 x ∈ ΣN . (16)

We note that the jump condition [P ] = 0 across ΣN models low cellular
adhesion and is consistent with the increased cellular mobilty observed in
hypoxic cells (Brizel et al., 1996; Cairns et al., 2001; Hoeckel and Vaupel,
2001; Postovit et al., 2002; Rofstad et al., 2002; Pouysségur et al., 2006). We
close this section by noting that (16) automatically satisfies [u · n] = 0 on ΣN .
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2.4 Mechanical Pressure

We can obtain an equation for the mechanical pressure in Ω∪ΩH by combining
(11) and (13) and by noting the pressure extension in (16):

−∇ · (µ̃∇P ) =





0 x ∈ ΩH

bc− λA x ∈ ΩV

−λN x ∈ ΩN .

(17)

By the continuity of the normal velocity across the tumor boundary, by Darcy’s
law (11) there is no jump in the normal derivative µ̃∇P ·n across Σ. Following
Cristini et al. (2003) and others, we model cell-cell adhesion forces in the
tumor by introducing a Laplace-Young surface tension boundary condition.
Therefore,

[P ] = γκ x ∈ Σ (18)

0 = [u · n] =− [µ̃∇P · n] x ∈ Σ, (19)

where κ is the mean curvature and γ is a constant cell-cell adhesion parameter.

Cellular proliferation and death are in balance outside of Ω ∪ ΩH . Therefore,

P ≡ P∞ x ∈ ∂(Ω ∪ ΩH). (20)

on the far-field boundary.

In this paper, we shall consider the special case of avascular growth in piecewise
homogeneous tissue and take µ̃ ≡ µH in ΩH and µ̃ ≡ µT in Ω, where µH and
µT are constants that are generally not equal. Note that because µ̃ is constant
within the tumor (and across ΣN), the pressure boundary conditions across
ΣN in (16) are automatically satisfied for any C1 smooth solution P .

2.5 Nondimensionalization

Following Cristini et al. (2003), Macklin (2003), Macklin and Lowengrub (2005),
and Zheng et al. (2005), we first note that the nutrient concentration equation
reveals intrinsic diffusional length (L) and relaxation time (λ−1

R ) scales:

L =

√
DT

λV

and λR =
µT γ

L3
, (21)
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Note that L ≈ 200 µm (Cristini et al., 2003; Macklin, 2003; Macklin and
Lowengrub, 2005). We nondimensionalize the nutrient and pressure by

σ =
c

c∞
and p =

L

γ
(P − P∞). (22)

As in Zheng et al. (2005), we define the dimensionless numbers

G =
λM

λR

=
bc∞
λR

, GN =
λN

λM

, A =
λA

λM

, and N =
cN

c∞
, (23)

where λM = bc∞ gives an intrinsic mitosis rate. The nondimensional param-
eter G gives the mitosis rate relative to the rate of relaxation due to cell-cell
adhesion in the tumor and is a measure of tumor aggressiveness. GN and A
measure the rates of enzymatic degradation of the necrotic core and apoptosis
relative to the mitosis rate, respectively. N is the threshold nutrient level for
cell viability.

Using these scales, the nondimensionalized nutrient concentration we solve for
satisfies





D∇2σ = 0 x ∈ ΩH

∇2σ = σ x ∈ Ω

[σ] = 0 x ∈ Σ

D∇σ
∣∣∣
Ω
· n = ∇σ

∣∣∣
ΩH

· n x ∈ Σ

σ ≡ 1 x ∈ ∂(Ω ∪ ΩH).

(24)

Here, D = DH/DT provides a measure of the nutrient richness of the tumor
microenvironment relative to the tumor.

The nondimensionalized pressure solves





µ∇2p = 0 x ∈ ΩH

∇2p = G(σ − A) x ∈ ΩV

∇2p = −GGN x ∈ ΩN

[p] = κ x ∈ Σ

µ∇p
∣∣∣
Ω
· n = ∇p

∣∣∣
ΩH

· n x ∈ Σ

p ≡ 0 x ∈ ∂(Ω ∪ ΩH).

(25)
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Here, µ = µH/µT is a measure of the relative ability of the external tissue
to (biomechanically) respond to the pressure, compared to the biomechanical
response of the tumor. Using this definition of µ, the nondimensional normal
velocity that we use to update the tumor boundary position is given by

V = −µ∇p
∣∣∣
ΩH

· n = −∇p
∣∣∣
Ω
· n. (26)

In this paper, we model Ω ∪ ΩH to be everything inside of the ball

B(xcent, R + 1), (27)

where

R = sup {|x− xcent| : x ∈ Ω} (28)

is the largest distance from the center of mass xcent of the tumor. Notice that
this ball contains the tumor Ω and all noncancerous tissue that is within the
diffusional distance from the tumor. See Figure A.1. Lastly, we note that the
viable and necrotic regions of the tumor are given by

ΩV = {x ∈ Ω : σ(x) ≥ N} (29)

ΩN = {x ∈ Ω : σ(x) < N} . (30)

2.6 Analysis of Volume Fractions for Tumor Spheroids

Following Byrne and Chaplain (1996a) and Cristini et al. (2003), we obtain and
analyze the steady-state, two-dimensional circular solution of the full tumor
system; the analysis for three-dimensional growth is similar. The results of the
analysis will be instructive when we interpret our nonlinear simulation results
for more complex geometries.

We shall solve for the exact nutrient concentration, pressure, and tumor bound-
ary velocity. Using the exact tumor boundary velocity, we can find the equi-
librium radii of the tumor (R∞) and the necrotic core (RN,∞) and calculate
the (two-dimensional) necrotic volume fraction:

Volumenecrotic
Volumetumor

=
(

RN,∞
R∞

)2

. (31)

We seek to understand the sensitivity of the necrotic volume fraction to D, µ,
A, G, GN , and N .
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For simplicity of analysis, we first assume that D À 1 and examine the effects
of D later in this section. If R = R(t) is the radius of the tumor at time t,
then σ ≈ 1 in the region R < r ≤ R+1, and the nutrient concentration σ(r, t)
is given by

σ(r, t) =





I0(r)
I0(R)

0 ≤ r ≤ R

1 R < r ≤ R + 1,
(32)

where I0(x) is the 0th modified Bessel function of the first kind.

Once the nutrient concentration profile is known, we can define

RN(t) = {r : σ(r) = N} = I−1
0 (N I0(R)) (33)

to be the radius of the necrotic core at time t. Notice that RN is completely
determined by R and N .

The cellular velocity is given by

u = −




p′(r) r 0 ≤ r ≤ R(t)

µp′(r) r R(t) < r ≤ R(t) + 1,
(34)

where r is the outward unit vector. By the continuity of the cellular velocity
across R(t), the velocity of the tumor boundary R′(t) is

R′(t) = − lim
r↑R(t)

p′(R(t)) = −µ lim
r↓R(t)

p′(R(t)). (35)

When the tumor has reached its equilibrium radius R∞,

0 = lim
r↑R∞

p′(R∞) = µ lim
r↓R∞

p′(R∞). (36)

Because p(R∞ + 1) = 0, we see that p ≡ 0 on R∞ < r ≤ R∞ + 1 when the
tumor has reached its steady size, and

0 = µ lim
r↓R∞

p′(R∞). (37)

Therefore, µ has no impact on the equilibrium radii R∞ and RN,∞, and hence
the equilibrium necrotic tumor volume fraction. For simplicity of analysis, we
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shall now assume µ À 1, in which case the exact solution of the pressure is

p(r) =





d1 + 1
4
GGNr2 0 ≤ r ≤ RN

d2 + d3 ln r −G I0(r)
I0(R)

+ 1
4
AGr2 RN < r ≤ R

0 R < r ≤ R + 1,

(38)

where d1, d2, and d3 are chosen to satisfy the continuity and boundary condi-
tions:

d1 +
1

4
GGNR2

N = d3 + d4 ln RN −G
I0(RN)

I0(R)
+

1

4
AGR2

N (39)

1

2
GGNRN =

d4

RN

−G
I1(RN)

I0(R)
+

1

2
AGRN (40)

d3 + ln R−G +
1

4
AGR2 =

1

R
. (41)

Notice that we can explicitly solve for d4 and find the boundary velocity:

R′(t) =−p′(R)

=−G

(
1

2

R2
N

R
(GN − A) +

I1(RN)

RI0(R)
− I1(R)

I0(R)
+

1

2
AR

)
. (42)

To find the equilibrium radius R∞, we set (42) equal to zero. Notice that G
scales out, and so R∞ (and thereby the equilibrium necrotic volume fraction)
depends only upon A, GN , N , and RN,∞, which itself depends only upon R∞
and N . Therefore, for large D, the necrotic volume fraction is a function of
A, GN , and N , and independent of G and µ. In fact, we have found that
this trend holds for any fixed value of D, and the necrotic volume fraction is
independent of D for values greater than approximately 10. For example, if
G = 20, GN = 1, A = 0, and N = 0.35, then the necrotic volume fraction
increases rapidly from 26.4% (D = 0.25) to 35.8% (D = 10), increases more
slowly to approximately 36.3% (D = 20), and then quickly approaches a
limiting value of approximately 36.9% as D increases further.

By solving (32) and (42), one can examine the evolution of the necrotic volume
fraction as a tumor spheroid approaches its equilibrium size. We have found
that the relative rate of change of the necrotic volume fraction is approximately
equal to the relative rate of change in the spheroid radius. (e.g., if the radius
is increasing at 0.1% per time, then the necrotic volume fraction is increasing
at a similar rate.) Thus, a steady necrotic volume fraction indicates that a
tumor spheroid has reached a steady state.
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As we shall verify numerically, it turns out that even during growth, the viable
and necrotic volume fractions of nonspherical tumors tend toward constant
values that depend primarily upon A, D, GN , and N . This indicates the
emergence of characteristic feature sizes within the tumor and suggests local
equilibration. In large part, the emergent local configuration is determined by
the thickness of the viable rim and the size of the necrotic core. The viable rim
size is determined by how well nutrients penetrate the tumor (D), the amount
of apoptosis (A), and the threshold nutrient level for necrosis (N). The size of
the necrotic core is determined by how quickly necrotic tumor cells are broken
down and removed (GN). This is in contrast with the spherical tumor case,
where the volume fractions only stabilize when the tumor reaches its (global)
equilibrium radius.

We note that because a spheroid has minimum surface area to volume ratio,
it provides a growing tumor with the least access to nutrient and therefore
the largest necrotic volume fraction. Therefore, for non-spheroids, we expect
smaller necrotic volume fractions. In fact, it is the attempt of growing tumors
to improve access to nutrient that often drives morphological instability.

3 Numerical Method

We adapt and apply the numerical techniques we recently described in Mack-
lin (2003) and Macklin and Lowengrub (2005, 2006). Because we anticipate
frequent tumor morphology changes (e.g., the tumor breaks into fragments, or
tumor fragments merge), we use the level set method: we introduce an auxil-
liary “level set” signed distance function ϕ satisfying ϕ < 0 inside Ω, ϕ > 0
outside Ω, and ϕ = 0 on the tumor boundary Σ. See Figure A.2. For more
information on the level set method and its application to fluid mechanics,
please see Osher and Sethian (1988), Sussman et al. (1994), Malladi et al.
(1995, 1996), Adalsteinsson and Sethian (1999), Sethian (1999), Osher and
Fedkiw (2001, 2002), and Sethian and Smereka (2003).

At every fixed simulation time, our method consists of the following steps:

(1) Solve for the nutrient with Equation (24). Note that this determines the
updated position of the necrotic core boundary ΣN .

(2) Solve for the pressure with Equation (25).
(3) Update the position of the boundary Σ by evolving the level set function

ϕ with the normal velocity V in Equation (26).
(4) Maintain ϕ as a distance function.
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3.1 Solution of the Tumor System

We solve for all quantities on a regular Cartesian mesh that is dynamically
resized to contain the growing tumor Ω and the noncancerous tissue ΩH . Both
the nutrient and pressure equations take the form

α∇2u = f1(x, t) + f2(x, t)u in Ω and ΩH (43)

[u] = g(x, t) on Σ (44)

[α∇u · n] = 0 on Σ (45)

u ≡ uO on ∂(Ω ∪ ΩH) (46)

where u is either σ or p,

α =





αT in Ω

αH in ΩH ,
(47)

and αT and αH are positive constants. We solve with a second-order accurate
extension to the ghost fluid/level set method that we developed in Macklin
and Lowengrub (2005). Please see Appendix A for new enhancements we have
made to the method to satisfy [α∇u · n] = 0 on the boundary Σ.

The pressure boundary condition requires an accurate curvature discretization.
In Macklin (2003) and Macklin and Lowengrub (2005), we found that standard
curvature discretizations are inaccurate and unstable near singularities that
result from morphological change. In all our numerical simulations, we use
a second-order accurate curvature discretization (in two dimensions) that we
developed in Macklin and Lowengrub (2006) to overcome these problems.

We update the position of the interface Σ by solving the PDE

∂ϕ

∂t
+ Ṽ |∇ϕ| = 0, (48)

where Ṽ (x, t) is an extension of V off of the tumor boundary Σ such that
Ṽ ≡ V on Σ. We construct Ṽ using the bilinear extrapolation we developed in
Macklin and Lowengrub (2005). As described in Macklin (2003) and Macklin
and Lowengrub (2005), we filter the high-frequency variations from Ṽ to attain
second-order accuarcy without a third-order CFL condition.

Lastly, we keep ϕ as a distance function (|∇ϕ| ∼ 1) by solving the PDE

ϕτ − sign(ϕ0) (1− |∇ϕ|) = 0 (49)
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to steady-state, where τ is pseudo-time and ϕ0 is the level set function prior
to reinitialization (Osher and Sethian, 1988; Malladi et al., 1995, 1996; Adal-
steinsson and Sethian, 1999; Sethian, 1999; Osher and Fedkiw, 2001, 2002;
Sethian and Smereka, 2003). We solve the PDE’s in (48) and (49) with the
third-order total variation-diminishing Runge-Kutta method (Gottlieb and
Shu, 1997; Gottlieb et al., 2001) and the fifth-order WENO method (Jiang
and Shu, 1996; Jiang and Peng, 2000).

3.2 Convergence of the Numerical Method

To evaluate the convergence of our extended numerical method, we simulated
two-dimensional tumor growth with D = 100, µ = 50, G = 20, GN = 1,
N = 0.35, and A = 0, and with a complex initial shape. (See the first frame
of Figure A.5.) We simulated up to time t = 0.15 at three spatial resolutions:
∆x ∈ {0.04, 0.08, 0.16}.

In Figure A.3 we plot the resulting tumor morphology at low resolution
(∆x = 0.16; upper left plot), medium resolution (∆x = 0.08; upper right
plot), and high resolution (∆x = 0.04; lower left plot). In all three plots, the
dark region denotes the necrotic core ΩN where σ ≤ N . In the lower right plot
of Figure A.3, we compare the position of the tumor boundary for all three res-
olutions: the dotted curve is for ∆x = 0.16, the dashed curve shows ∆x = 0.08,
and the solid curve gives ∆x = 0.04. As we can see, there are considerable
differences in the positions of the necrotic core and tumor boundary between
the low- and medium-resolution plots, but far fewer differences between the
medium- and high-resolution plots; this is indicative of fast convergence. In
this and all plots hereafter, white regions correspond to ΩH , which consists of
the ECM, noncancerous cells, and any other material outside of the tumor.
Black regions denote the necrotic core ΩN , and gray regions show the viable
portion ΩV of the tumor.

Defining the order of convergence (of the interface position) similarly to Mack-
lin and Lowengrub (2005) (but measuring error over the entire computational
domain, rather than in a band near the tumor boundary), the order of con-
vergence for this example was 2.22, thereby demonstrating that our numerical
method is capable of accurately simulating tumor growth, even when faced
with complex morphologies.
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4 Numerical Results

We now investigate the effects of the tumor microenvironment on the mor-
phology and growth patterns of two-dimensional, avascular tumors growing
into piecewise homogeneous tissues. In all simulations, we set the apoptosis
parameter A = 0 because the tumors are assumed to ignore inhibitory signals
for self-destruction (apoptosis). We numerically compute the solutions using
a computational mesh with ∆x = ∆y = 0.08. All tumors are simulated to a
scaled nondimensional time of T = Gt = λM t′ = 20, where t′ is dimensional
time. (The dimensional time is given by t′ = T/λM .) Because λ−1

M ∼ 1 day,
this nondimensional time allows us to compare tumors of varying simulated
genotypes at fixed physical times. (e.g., T = 20 ≈ 20 days.)

We shall characterize the effects of the modeled tumor microenvironment
on growth by presenting a morphology diagram. (Figure A.4.) We simulate
growth over a wide range of microenvironmental parameters (D and µ) with
G = 20, GN = 1, and N = 0.35, each with identical initial shape as in the
first frame of Figure A.5. Recall that D and µ characterize the relative nu-
trient diffusivity and biomechanical responsiveness of the exterior tissue, G
measures the tumor aggressiveness (proliferation compared to cellular adhe-
sion), GN characterizes the rate of degradation of the necrotic core, and N is
the threshold nutrient level for tumor cell viability.

Later in this paper, we shall consider the effect of G, GN , and N . We let
D ∈ {1, 50, 100,∞} and µ ∈ {0.25, 1, 50,∞}. When D = ∞, we set σ ≡ 1 in
non-encapsulated regions of ΩH and only solve the Poisson equation for σ in
Ω and the encapsulated portions of ΩH (with diffusion constant 1). Likewise,
when µ = ∞, we set p ≡ 0 in non-encapsulated regions of ΩH and only solve
the Poisson equation for p in Ω and the encapsulated portions of ΩH (with
mobility 1). In Figure A.4, we plot the shape of each tumor at time T = 20.0.
In all figures, the black regions denote ΩN where the tumor is necrotic, the gray
regions show the viable tumor region ΩV , and the white regions correspond to
ΩH , which consists of the ECM, noncancerous cells, and any other material
outside of the tumor.

On the horizontal axis, we vary the nutrient diffusivity of the surrounding tis-
sue; as D increases from left to right, the simulated microenvironment varies
from nutrient-poor to nutrient-rich. On the vertical axis, we vary the mobility
of the surrounding material; as µ increases from bottom to top, the microenvi-
ronment ranges from low-mobility to high-mobility. The greater the mobility
µ, the greater the ability of the external, non-cancerous tissue to respond to
the pressure generated by the growing tumor, and tumor cells are more able
to penetrate the tissue.
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We observe three distinct tumor morphologies through this broad range of
simulated tissue types. In the nutrient-poor regime on the left side of the dia-
gram, tumors demonstrate fragmenting growth, characterized by the repeated
breakup of the tumor in response to the low nutrient level. The nutrient-
rich, low-mobility regime in the bottom right of the morphology diagram is
characterized by fingering growth, where buds develop on the tumor bound-
ary that invade the surrounding tissue, forming long, invasive fingers. The
nutrient-rich, high-mobility regime in the top right of the diagram demon-
strates compact/hollow growth, where the tumors tend to grow into spheroids
and typically form abscesses filled with noncancerous tissue and fluid, similar
to a necrotic core. As we shall discuss further in Section 5, these morpholo-
gies are similar to those observed experimentally in vitro by Frieboes et al.
(2006b). See Figure A.18.

We have found that the tumor morphologies in the morphology diagram in
Figure A.4 are qualitatively similar when recomputed with different genetic
characteristics (modeled by A, G, GN , and N), although, as we demonstrate
in Section 4.2, large changes in the genetic parameter values can shift the
morphology from one type to another. Therefore, a tumor’s morphology de-
pends primarily upon the characteristics of the microenvironment. We shall
demonstrate this by investigating the three major tumor morphologies in the
following sections.

To better characterize the morphological characteristics of a tumor, we define

S =
(Perimeter)2

4π Area
(shape parameter) (50)

LS =
2 Area

Perimeter
(length scale). (51)

The shape parameter S is a measure of how noncircular a tumor fragment
is. Note that S ≥ 1, and S increases as a tumor fragment is deformed away
from a circle. The length scale LS is a measure of the smallest dimension of a
tumor fragment. For example, for a rectangular fragment with width W and
length L, LS = LW/(L + W ), and LS ∼ W if W ¿ L. To describe tumors
comprised of multiple fragments, we calculate S and LS for each individual
fragment and aggregate the results with a fragment volume-weighted average.

4.1 Fragmenting Growth into Nutrient-Poor Microenvironments

In Figure A.5, we show the evolution of a tumor growing into a high-mobility,
nutrient-poor tissue, where D = 1 and µ = ∞. Here, G = 20, GN = 1,
N = 0.35, and A = 0. Due to the low nutrient diffusivity D, the nutrient

21



level lies below N in much of the tumor microenvironment. Accordingly, a
large portion of the tumor becomes necrotic and is broken down by enzymes,
leading to early fragmentation. (See T = 10.0 in Figure A.5.)

In each tumor fragment, cell proliferation is faster on the outer side (toward
the outer boundary of ΩH) where the nutrient level is highest. (See Figure
A.6 to see the nutrient concentration near a typical tumor fragment.) On the
opposite side of each fragment, the nutrient level is lowest, leading to slow
proliferation and necrosis. The net result is preferential growth of the tumor
fragment away from the nutrient-depleted center of the computational domain.
In the nutrient-poor microenvironment, it is advantageous for the fragments
to elongate, thereby increasing the surface area of the fragments and allow-
ing better access to nutrient. (See T = 20.0 and T = 30.0 in Figure A.5.)
Eventually, when a tumor fragment grows sufficiently long, necrosis causes
the fragment to break into multiple satellite fragments which are temporar-
ily stabilized by cellular adhesion, and the process repeats. (See T = 50.0,
T = 60.0, and T = 70.0 in Figure A.5.)

We can gain a more detailed understanding of this repeating elongation-
fragmentation cycle by examining the evolution of S and LS in the top left plot
in Figure A.7. Initially, the shape parameter S (solid line) is large but drops
rapidly as cell-cell adhesion pulls cells together and shrinks high-frequency per-
turbations in the tumor boundary. Thereafter, the shape parameter steadily
rises as the tumor fragments elongate and become increasingly noncircular. At
the same time, the length scale (dashed line) decreases because the width of
the fragments decreases as they elongate. Whenever a fragment becomes suf-
ficiently noncircular, the shape parameter S peaks, and decay of the necrotic
core breaks the fragment into multiple smaller pieces. After the break, the
cell-cell adhesion causes the new fragments to coalesce into spheroids, result-
ing in a rapid drop in S and an increase in the length scale LS. Consequently,
S reaches a peak when LS reaches a local minimum, and vice versa. As the
trend repeats, S and LS trace out a “sawtooth” pattern in Figure A.7 that is
characteristic of fragmenting tumor growth. In fact, the formation of smaller
fragments at more frequent time intervals can be observed as smaller sawteeth
superimposed on the overall pattern.

The repeated elongation-fragmentation cycle is observed in tumor growth into
lower-mobility, nutrient-poor regions as well. In Figure A.8, we compare the
tumor morphology at T = 60.0 and T = 70.0 for a high-mobility tissue (left
plot: µ = ∞) and a lower-mobility tissue (right plot: µ = 1); repeated fragmen-
tation is observed in both cases. When growing into a lower-mobility region,
however, it is more difficult for the tumor to deform into highly-elongated
fragments. Instead, the individual fragments grow into larger spheroids before
deforming and breaking into new fragments. All these trends can be observed
in the evolution of the shape parameter S (solid curve) and LS (dashed curve)
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on the top right plot of Figure A.7. The characteristic “sawtooth” pattern can
still be seen in the shape parameter and length scale. However, the oscilla-
tions in the shape parameter are much smaller, which reflects the difficulty in
forming large deformations when growing into low-mobility tissue. The lack
of smaller, superimposed sawteeth indicates fewer topology changes and more
localized growth, which is seen in the smaller number of tumor fragments in
Figure A.8. Because the tumor fragments grow to form larger spheroids before
deforming and fragmenting, the length scale also tends toward higher values
in the low-mobility tissue case.

When examining the internal structure of tumors growing in nutrient-poor
(D = 1) tissues, we find that the high-mobility (µ = ∞; lower left plot in Fig-
ure A.7) and low-mobility (µ = 1; lower right plot in Figure A.7) tissue cases
are quite similar. The viable and necrotic volume fractions rapidly approach
limiting values that are nearly identical for both tumors, at approximately
70% viable area and 30% necrotic area. The similarity of the limiting val-
ues is consistent with our analysis in Section 2.6, where we found that the
necrotic volume fraction does not depend upon the tissue cellular mobility µ
for steady-state tumor spheroids. Unlike the case of circular growth where the
volume fractions only stabilize once a (global) steady-state has been achieved,
the necrotic volume fraction here stabilizes even during growth because the
tumor features apparently reach local equilibrium between cell proliferation
and necrosis. Interestingly, the necrotic volume fraction is quite similar to that
predicted for spheroids with D = 1 (see Section 2.6), albeit somewhat lower,
which indicates that the deformation of the larger tumor fragments marginally
increases access to nutrient.

Tumors growing into nutrient-poor microenvironments demonstrate repeated
fragmentation through a wide range of mitosis rates (governed by the parame-
ter G) and necrotic tissue degradation rates (GN). In Figure A.9, we show the
tumor morphology at time T = 20.0 for a variety of values of G and GN and
µ = D = 1. Tumor fragmentation is observed in almost all cases, particularly
for fast-proliferating, aggressive tumors with higher values of G. An increased
aggressiveness (G) increases the rate of tumor fragmentation. Similarly, in-
creasing the rate of necrotic tissue degradation (GN) tends to destabilize the
tumor, also leading to an increased rate of fragmentation. However, this effect
is highly nonlinear: if GN is large relative to G, then proliferation, necrosis, and
cellular adhesion can balance to maintain spheroids and prevent further tumor
fragmentation. This can be seen in the G = 1, GN = 10 case in Figure A.9: the
tumor splits into two spheroids that reach a steady size while preferentially
growing outward toward higher nutrient levels. We note that for sufficiently
low levels of tumor aggressiveness (e.g., G = 0.10), tumor instability decreases
until the steady-state configuration is tumor spheroids, as predicted in Cristini
et al. (2003) for non-necrotic tumors. (Results not shown.)
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As was predicted in Section 2.6 in the case of tumor spheroids, we found that
the volume fractions of viable and necrotic tissue were largely independent of
the tumor aggressiveness parameter G and the microenvironmental character-
istics (D and µ) and were primarily functions of N and GN . For N = 0.35 and
GN = 0.10, necrotic tumor cells were degraded very slowly; consequently, the
majority of the tumor (approximately 80%) was composed of necrotic tissue
and 20% by viable cells. Fixing N = 0.35 and increasing GN , the volume frac-
tion occupied by necrotic tumor tissue steadily decreased, at approximately
30% for GN = 1 and 5% for GN = 10.

In the cases where the tumors have not fragmented by T = 20.0, moderate-
to-significant deformation still occurs, and fragmentation is likely at a later
time. The occurrence of repeated tumor fragmentation over a broad range of
G and GN demonstrates that in the nutrient-poor regime, tumor morphology
is largely determined by the characteristics of the surrounding microenviron-
ment, while the genetic characteristics of the tumor (G, GN , A, and N) deter-
mine the size and rate of evolution of the tumor. In addition, increasing the
apoptosis rate A to positive values results in similar morphological behavior,
only with more rapid tumor fragmentation and a greater number of fragments.
(Results not shown.)

We examined the impact of N on the morphology of tumor growth in the
nutrient-poor regime, and the results for N ∈ {0.175, 0.350, 0.700} are given
in Figure A.10, where D = µ = GN = 1 and G = 20. For all three values of
N , the tumor demonstrated repeated fragmentation (top row of Figure A.10),
and therefore all demonstrated the characteristic sawtooth pattern in S and
LS. (Bottom row of Figure A.10.) As N increases, the volume fraction of the
tumor undergoing necrosis increases from approximately 20% (N = 0.175) to
roughly 30% (N = 0.350) to nearly 40% (N = 0.700), leading to a decrease in
the overall size and spread of the tumor fragments (top row of Figure A.10).

The finding that tumor morphology in the nutrient-poor regime depends pri-
marily upon the tumor microenvironment (µ and D) and not the tumor’s
genetic characteristics (N , GN , and G) has important implications for cancer
treatment. In anti-angiogenic therapy, drugs (e.g., Avastin) are supplied to
prevent the neovascularization of the growing tumor and the surrounding tis-
sue. As we have seen, the resulting nutrient-poor microenvironment may cause
the tumors to fragment and invade nearby tissues, particularly for growth in
higher-mobility tissues. This can negate the positive effects of antiangiogenic
therapy and may lead to recurrence and metastasis. This result is consis-
tent with the findings of Cristini et al. (2005), who suggested that combining
antiangiogenic therapy with adhesion therapy may counteract the negative
problems associated with tumor fragmentation in the nutrient-poor regime.
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4.2 Invasive, Fingering Growth

In Figure A.11, we show the evolution of a tumor growing into a low-mobility,
nutrient-rich tissue, where D = 50 and µ = 1. As in the previous section,
G = 20 GN = 1, and N = 0.35. Because nutrient readily diffuses through
the surrounding tissue ΩH , the tumor is initially non-necrotic, allowing for
unchecked growth and the development of buds on the tumor periphery that
protrude into the surrounding tissue. (See time T = 10 in Figure A.11.) Due to
the cell-cell adhesion (modeled by the pressure jump in (18)), the proliferation-
induced mechanical pressure is greatest surrounding any protusions of the tu-
mor into the healthy tissue and approximately zero near flatter regions of the
tumor boundary. Because the cellular motility µ is low in the noncancerous
tissue, the individual cells and the extracellular matrix cannot move to equili-
brate the pressure. As a result, the cellular velocity field is mostly parallel to
the buds, in spite of adequate nutrient levels between the growing buds. (See
the left plot of Figure A.12 for the nutrient concentration between two growing
buds, and the right plot for the corresponding pressure field.) This makes it
difficult for buds to merge, leading to the formation of long, invasive fingers.
(See T = 30.0 to T = 50.0 in Figure A.11.) The net effect is highly-invasive
growth into the surrounding tissue. (See T = 50.0 in Figure A.11.)

Within the nutrient-rich, low-mobility tissue regime, we examined two levels of
tissue mobility (µ ∈ {0.25, 1}) and three nutrient diffusivities
(D ∈ {50, 100,∞}), for a total of six combination of mobility and nutrient
diffusivity. In the top left plot in Figure A.13, we show the evolution of the
shape parameter S for these six simulations. We found that the shape param-
eter depended primarily upon the tissue mobility: the three lower-mobility
tissue examples (µ = 0.25, thin dotted, dashed, and solid curves) had an
overall higher shape parameter than the higher-mobility tissue (µ = 1, thick
dotted, dashed, and solid curves), which reflects a higher degree of deforma-
tion. This trend is indeed observed in the morphologies along the µ = 0.25 row
of Figure A.4. This is because the lower the tissue mobility, the more difficult
it is for cells in the healthy tissue to overcome the cell-cell and cell-ECM ad-
hesion and move to equilibrate pressure variations, and the more difficult it is
for the ECM to deform in response to the pressure, allowing for the formation
of sharper corners and greater shape instabilities.

This trend is also reflected in the tumor perimeters in the lower left plot
of Figure A.13: overall, the larger deformation in the lower-mobility tissue
simulations leads to overall larger perimeters in the low-mobility tissue cases
(thin curves) than in the higher-mobility tissue cases (thicker curves). As
a result of the increased surface area, the low-mobility tissue tumors had
greater access to nutrient. This leads to a surprising result: the increased
morphological instability from growing into lower-mobility tissues improves
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access to nutrient and leads to larger tumors, as can be seen in the lower
right plot in Figure A.13; for each fixed nutrient diffusivity, the volume of the
viable area of each tumor was larger for the lower-mobility tissue simulation
(µ = 0.25) than for the corresponding higher-mobility tissue example (µ = 1).
For all examples, the shape parameter steadily rose as a function of time, which
reflects the increasing shape instability as the tumors invade the surrounding
tissue; this is characteristic of invasive, fingering growth. This has implications
for therapies that target cell-cell and cell-ECM adhesiveness: if the therapy
decreases the mobility in the surrounding microenvironment (by increasing
the cell-cell or cell-ECM adhesiveness or rendering the ECM more rigid), then
invasive, fingering growth into the surrounding tissue is likely. Likewise, any
treatment that decreases the permeability of the host tissue to tumor cells
may lead to an increase in tumor invasiveness.

In the upper right plot of Figure A.13, we see that the length scale LS is most
strongly dependent upon the nutrient diffusivity D, and largely independent
of the tissue mobility µ. As the nutrient diffusivity increases, nutrient is better
able to diffuse between the growing fingers, allowing the nutrient to penetrate
farther into the fingers. This allows the tumor to support thicker fingers, which
can be seen in the increased length scale parameter LS for higher values of
D. In all cases, the length scale tended toward a roughly fixed value, which
demonstrates that each tissue can support a specific finger thickness.

As was predicted in Section 2.6 for tumor spheroids and observed in the frag-
menting growth regime, the volume ratios of the tumor were nearly indepen-
dent of the tumor microenvironment. We examined the viable and necrotic
volume fractions for growing tumors with µ ∈ {0.25, 1} and D ∈ {50, 100,∞}.
In all cases, the volume fractions quickly stabilized, with the viable rim com-
prising approximately 65% of the tumors and the remaining 35% being made
up of necrotic cells. This necrotic volume fraction is slightly less than that pre-
dicted for tumor spheroids with D = 50 (approximately 37% for spheroids),
which again reflects the fact that the tumor’s morphological response to the
microenvironment increases its access to nutrient.

In Figure A.14, we examine the effect of the tumor aggressiveness parameter
G and the necrotic degradation parameter GN on the invasive, fingering mor-
phology. We fix D = 50, µ = 1, N = 0.35, and take 0.1 ≤ GN ≤ 10.0 and
1 ≤ G ≤ 100. For lower tumor aggressiveness values (G = 1) and GN ≥ 1, the
fingering effect was significantly reduced, resulting in more stable, tubular-
shaped tumors, an effect that has been observed in experiments (Frieboes
et al., 2006b). These structures form because tumor cell proliferation (the
numerator of G) and cell-cell adhesion (the denominator of G) are roughly
in balance when G = 1. The competition between proliferation and adhe-
sion smooths but does not completely prevent shape instabilities, which may
continue to grow. For sufficiently large values of G, the invasive fingering mor-
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phology was observed in all simulated tumors. For lower values of GN (left
column in Figure A.14), the low rate of degradation of the necrotic tumor tis-
sue leads to the formation of very wide fingers; this morphology may be better
described as a collection of spheroids. As GN is increased, the necrotic core
is degraded more quickly, leading to a decreased finger thickness, less stable
morphology, and more aggressive tissue invasion. As GN is increased toward
GN = 10 (right column in Figure A.14), the finger thickness is decreased to the
point where the tumor periodically breaks into fragments and then reconnects,
leading to the encapsulation of noncancerous tissue (white enclosed regions).
This morphology, which we refer to as compact/hollow, is characterized by
the presence of a large abscess containing a mixture of necrotic cells, fluid,
noncancerous ECM, and cellular debris, much like a necrotic core. A long-
time simulation of a tumor with the compact/hollow morphology can be seen
in Figure A.15 with a different value of µ; this morphology will be examined
in greater detail in the following section. The effect of GN on growth is seen
to be non-monotonic: increasing GN at first limits the size of the tumor by
decreasing the thickness of the invasive fingers and limiting the overall spread
of the tumor, but after a certain point, instability breaks the tumor and allows
greater spread through the surrounding noncancerous tissue. For example, for
G = 10, the total viable area at time T = 20 drops from 103.3404 when
GN = 0.10 to 93.3156 for GN = 1.0, then increases to 133.7360 for GN = 10.

Lastly, we studied the effect of N on the invasive fingering growth regime
by simulating with N ∈ {0.175, 0.350, 0.700}, G = 20, GN = 1, D = 1, and
µ = 1. As in the fragmenting case, we found that varying N changes the tumor
evolution quantitatively but not qualitatively. As N increases, the thickness of
the viable rim and the overall spread of the tumor decrease, and the necrotic
volume fraction increases (N = 0.175: approximately 25%; N = 0.35: nearly
35%; N = 0.70: over 40%.).

4.3 Compact, Hollow Growth

In Figure A.15, we show the evolution of a tumor growing into a high-mobility
(µ = 50), nutrient-rich (D = 100) tissue, where G = 20, N = 0.35, and
GN = 1. In the beginning (T = 0.0 to T = 5.0 in Figure A.15), growth is
very similar to the invasive, fingering case. Because the noncancerous tissue is
nutrient-rich, the tumor only develops a necrotic core after an initial period of
growth, after which shape instabilities (buds) appear. However, because the
noncancerous tissue has a greater mobility µ, the cells and extracellular matrix
in the surrounding noncancerous tissue are more free to move and relieve the
pressure caused by the growing tumor. Consequently, the buds on the outer
edge of the tumor do not invade the surrounding tissue, but instead flatten
and periodically merge, encapsulating healthy tissue in the process (T = 10.0
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to T = 20.0 in Figure A.15), a process that has been previously observed in
boundary integral simulations of tumor growth (Cristini et al., 2003). In the
meantime, necrotic tissue on the inside boundary of the tumor continues to
degrade, leading to the formation of a large abscess in the tumor core filled with
a mixture of noncancerous tissue and cellular debris (T = 15.0 and T = 20.0
in Figure A.15). We expect that in reality, any noncancerous cells contained
in the abscess may also undergo necrosis, and due to the presence of matrix
degrading enzymes in the tumor, encapsulated ECM should be degraded. This
suggests an evolution similar to those seen for smaller values of G. We shall
further investigate these effects in a future work.

Within the nutrient-rich, high-mobility regime, we examined two levels of
mobility (µ ∈ {50,∞}) and three nutrient diffusivities (D ∈ {50, 100,∞}).
In all plots, G = 20, GN = 1, N = 0.35, and A = 0, thin curves denote lower-
mobility (µ = 50) simulations, and thick curves give higher-mobility (µ = ∞)
simulations. In all plots, the dotted lines are for D = 50, the dashed lines are
D = 100, and the solid lines correspond to D = ∞.

In the top left plot of Figure A.16, we plot the evolution of the shape param-
eter S for all these simulations. In all cases, the shape parameter increased
in an eratic manner, which is indicative of frequent increases in morpholog-
ical complexity. This is a reflection of the frequent formation and merger of
buds, and of the encapsulation of noncancerous tissue by the growing tumor
seen in Figure A.15, and the behavior is similar for all simulations except for
the D = 50, µ = ∞ case. In that case, the encapsulation of tissue is much
less frequent, and the behavior is similar to fragmenting growth: the tumor
breaks into two halves, each of which resembles the elongated fragments ob-
served in fragmenting growth. (See the uppermost tumor in Figure A.17 for
a closer view of this morphology.) For all six simulations, the values of S are
generally higher than for the other growth regimes. This is because the tumor
consists of two concentric boundaries like a ring: a complex, outer boundary
with many shape instabilities, and a necrotic inner boundary. Accordingly,
the compact/hollow tumors have a much greater ratio of perimeter to area.
The length scale LS, shown in the top-right plot of Figure A.16, generally
decreases for all simulations, with signs of tending toward a limiting value.
This is because as the tumors grow, a characteristic rim thickness emerges,
but the frequent encapsulation of noncancerous tissue causes the length scale
to fluctuate in time.

We examined the viable and necrotic volume fractions for each of these simu-
lations. As was the case with fragmenting and fingering growth, the percent-
ages were nearly identical (approximately 65% − 75% viable and 30% − 35%
necrotic) for all cases throughout most of the simulation time. The necrotic
volume fraction was substantially less than the approximate 37% predicted
for tumor spheroids with D ≥ 10, and also generally less than that observed
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for invasive, fingering tumors with equal values of D. This is because the buds
on the tumor periphery increase access to nutrient, are small enough to have
very little necrotic tissue, and thereby reduce the necrotic volume fraction.

In Figure A.17, we examine the effect of the tumor aggressiveness G and the
necrotic degradation rate GN on the compact tumor morphology. In all these
simulations, we fix D = 50, µ = ∞, and N = 0.35. For lower values of G
(bottom of the plot), the tumors remain in compact morphologies that fail
to encapsulate noncancerous tissue, although shape instabilities may occur at
long times. When G = 1, cell proliferation (numerator of G) and adhesion (de-
nominator of G) are roughly in balance, which shrinks but does not completely
prevent shape instabilities. For larger values of G (upper portion of the plot),
the cell proliferation rate outstrips cell-cell adhesion, resulting in folds in the
outer tumor surface that encapsulate noncancerous tissue. For fixed values of
G, we see that increasing the necrotic tissue degradation rate parameter GN

shrinks the necrotic volume fraction of the tumors. In the cases where non-
cancerous tissue has been encapsulated (G > 1), increasing GN increases the
size of the central tumor abscess.

Lastly, as in the fragmenting and fingering cases, we found that varying N
changes the tumor evolution quantitatively but not qualitatively. As N in-
creases, the thickness of the viable rim decreases, the necrotic volume fraction
increases, and morphological instability also increases.

5 Discussion and Future Work

In this work, we have extended previous models of tumor growth and devel-
oped a framework to investigate the interaction between avascular solid tumors
and their microenvironments during growth. In particular, we model the per-
fusion of nutrient through the tumor and the surounding microenvironment,
the build-up of pressure in the tissue from the proliferation of cancerous cells,
cell-cell and cell-ECM adhesion, and the loss of tumor volume due to necrosis.

Following previous models of solid tumor growth (Greenspan, 1976; McElwain
and Morris, 1978; Adam, 1996; Byrne and Chaplain, 1996a,b; Chaplain, 2000),
the genetic characteristics of the tumors are modeled by a small number of
nondimensional parameters. One parameter, G, measures the tumor aggres-
siveness. A second parameter A measures the susceptibility of tumor cells to
apoptosis, a third parameter N gives the critical nutrient level for tumor cell
necrosis, and a fourth parameter GN measures the enzymatic breakdown of
necrotic tumor cells.

The biophysical characteristics of the microenvironment are modeled by a pa-
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rameter D that measures the nutrient diffusivity of the host tissue relative to
the diffusivity in the tumor, and a mobility parameter µ. The parameter D
can be used to model normoxia (high D) or hypoxia (low D) in the microen-
vironment. The parameter µ models the combined effects of adhesion (both
cell-cell and cell-ECM) and the capacity of the ECM to deform in response
to pressure induced by tumor cell proliferation. The proliferative (oncotic)
pressure serves as a simple model of tissue stress.

Using this framework, we investigated the effect of the microenvironment on
tumor growth with a variety of genetic parameter combinations. In almost
all cases, we found that the qualitative features of tumor morphologies are
primarily determined by the microenvironmental parameters (D and µ). The
parameters that characterize the tumor genetics (G, GN , N , and A) generally
affect quantitative aspects of the tumor progression, such as the size, the
amount of invasion into the host tissue, the rate of growth, and the degree of
morphological instability.

We found that the internal structure of the tumors (i.e., the necrotic and
viable volume fractions of the tumors) depends primarily upon D, GN , and
N , and very little upon µ and G. Furthermore, we found that these volume
fractions tend toward constant values even during growth, which indicates
the emergence of characteristic feature sizes within the growing tumors and
suggests a local equilibrium is attained. This is in contrast to the case of tumor
spheroids, whose volume fractions only stabilize once a global steady state is
established.

We observed three distinct morphologies: fragmenting, invasive/fingering, and
compact/hollow growth. If the microenvironment is nutrient-poor (low D), tu-
mors tend to break into small fragments and spread throughout the microen-
vironment, regardless of the cellular mobility µ. Within this nutrient-poor
growth regime, decreasing the microenvironmental mobility µ (by increasing
the noncancerous cell-cell and cell-ECM adhesion or increasing the rigidity of
the ECM) decreases the extent of the fragmentation and slows invasion into
the surrounding tissue, but does not completely prevent the hypoxia-induced
morphological instability. We note that unstable tumor morphologies in the
nutrient-poor regime have also been observed by Anderson (2005) and Cristini
et al. (2005).

The invasive, fingering morphology was found in cases of growth into nutrient-
rich, low-mobility microenvironments. We found that increasing nutrient per-
fusion does not prevent this invasive morphology, and the lower the microen-
vironmental mobility µ, the greater the degree of morphological instability
and invasiveness. Tumors growing into nutrient-rich, high-mobility tissues de-
velop compact/hollow morphologies. A hallmark of this growth regime is the
formation and merger of buds on the tumor periphery, which leads to the en-
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capsulation of noncancerous regions ΩH and the formation of a large abscess
(a mixture of noncancerous cells, ECM, fluid, and cellular debris) in the tumor
interior. Qualitatively, the interior abscess is similar to a necrotic core.

Within each of these three growth regimes, we investigated the effects of the
genetic parameters G, GN , and N . We found that lowering G, which corre-
sponds to decreasing the tumor proliferation rate and/or increasing the tumor
cell-cell adhesiveness, can stabilize growth, an effect that is already known.
On the other hand, increasing GN , which corresponds to an increased rate of
degradation of the necrotic regions, tends to destabilize growth. Increasing N
leads to smaller tumors.

Our results have important implications for therapy. Since decreasing the nu-
trient levels in the microenvironment tends to increase tumor fragmentation
and invasion into the surrounding tissue, caution must be exercised when con-
sidering anti-angiogenic therapies. If this therapy is aimed at destroying the
neovasculature as much as possible, this could lead to the adverse effect of
inducing morphological instability that may lead to additional tumor frag-
mentation and invasion. Indeed, a number of experimental studies have now
shown that anti-angiogenic therapies may increase the tendency of tumors
to fragment and invade surrounding host tissue. (e.g., Sakamoto (1987), Ru-
binstein et al. (2000), DeJaeger et al. (2001), E. Rofstad and Halso (2002),
Seftor et al. (2002), Lamszus et al. (2003), and Bello et al. (2004).) Con-
versely, we found that increasing the nutrient levels in the microenvironment
leads to greater morphological stability and increased compactness of the tu-
mor, thereby rendering the tumors more resectable. Consequently, our results
support the contention of Cristini et al. (2005) that treatments that seek to
normalize the tumor vasculature (by selectively “pruning” weak blood vessels
with targeted anti-angiogenic therapy) may stabilize the tumor morphology
by providing the tumor with increased access to nutrient. Since such treat-
ments may also increase the accessibility of the tumors to chemotherapeutic
agents (Jain, 2001; Sinek et al., 2004), our results provide additional sup-
port for the use of targeted anti-angiogenic therapy as an adjuvant therapy to
chemotherapy and resection. This is currently under investigation.

Our findings may have particular significance for breast cancer treatment when
considered alongside other known effects of hypoxia. In our simulations, hy-
poxia, such as that caused by anti-angiogenic therapy, increases tumor mor-
phological instability and invasiveness. In recent findings by Erler et al. (2006),
it was shown that hypoxia upregulates lysl oxidase (LOX), which, in turn,
is associated with estrogen receptor (ER)-negative breast cancer cells. This
is of clinical importance, because ER-negative breast cancers are unsuited
to hormone-based therapies and generally have worse prognosis (Chi et al.,
2006). Therefore, when indiscriminant anti-angiogenic therapy is applied to
breast cancer, it may lead to the fragmentation of the tumor into smaller,
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more invasive tumors which are resistant to further treatment.

As was pointed out by Cristini et al. (2005), another approach to therapy is to
use anti-invasive drugs such as Met inhibitors (Boccaccio et al., 1998; Bardelli
et al., 1999; Morotti et al., 2002) or hepatocyte growth factor antagonists (Date
et al., 1998; Michieli et al., 1999) in addition to anti-angiogenic therapies. Such
therapies affect the cell-cell and cell-ECM adhesive properties of the tumor. A
recent experimental study on mouse models of malignant glioma shows that
fragmentation can be prevented, and the elimination of tumor satellites may
be achieved by a combined anti-angiogenic and anti-invasive therapy (Bello
et al., 2004). In the nutrient-poor growth regime, increasing the cell-cell and
cell-ECM adhesion of the microenvironment (i.e., reducing µ) can help to limit
the rate of tumor fragmentation and the extent of tissue invasion. Decreasing
the permeability of the microenvironmental ECM to tumor cells by other
means such as making the extra-tumor ECM more dense, stiffer, and less able
to support tumor cell movement could also attain this effect.

Interestingly, the opposite approach is warranted in the nutrient-rich growth
regime. In this regime, increasing µ in the extra-tumor ECM decreases the
extent of invasive fingering. Thus, in a nutrient-rich tissue, an approach to
therapy is to increase the permeability of the microenvironment ΩH to tumor
cells. This can be accomplished by decreasing the cell-cell and cell-ECM ad-
hesion in the microenvironment ΩH (while leaving tumor cells unaffected), or
equivalently, by increasing the tumor cell-cell and cell-ECM adhesion. We note
that this effect may also be attained by decreasing the stiffness or density of
the surrounding ECM. Such subtleties highlight the importance of considering
tumor-microenvironment interactions when planning therapies that affect the
adhesive and mechanical properties of the tumor, the surrounding tissue, or
both.

It is important to ask whether the morphologies predicted here in our study
occur during real tumor growth. In fact, by characterizing the range of behav-
ior in the tumor growth model and comparing to experiments, we may predict
physically relevant parameter ranges. For example, in our studies, we have
taken the aggressiveness parameter G ≥ 1. In simulations not presented, we
have found that taking G < 1.0 with apoptosis A = 0.0 may result in stable,
circular tumor morphologies during avascular growth. We note that in recent
work, Frieboes et al. (2006b) predicted a lower value of G for morphologic
instability (0.6 ≤ G ≤ 0.9 for marginal stability, and G > 0.9 for very un-
stable behavior) based upon an approximation of a similar theoretical model
of spheroid growth that accounted only for apoptosis and not necrosis. This
analysis overpredicts instability.

Interestingly, all of the morphologies found in this work have been seen in
an in vitro tumor growth study performed as part of a joint experimen-
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tal/computational investigation of tumor growth by Frieboes et al. (2006b).
In that study, tumor spheroids were placed in a solution containing various
levels of glucose and fetal bovine serum (FBS). The levels of glucose and FBS
were both found to affect the tumor progression and morphology. When the
glucose level was low, the in vitro tumors shed cells and fragmented. The de-
gree to which this occurred depended upon the level of FBS. When the FBS
level was low, growth was slow and a limited amount of tumor fragmentation
was observed. See the lower left plot of Figure A.18 for a characteristic image.
When the level of FBS was high, the growth was faster, the tumors developed
bulbous protrusions, and many fragments were formed. See the upper left plot
of Figure A.18. When the glucose level was high and the FBS level was low,
invasive fingers developed, and fragmentation was limited. See the lower right
plot of Figure A.18. When the levels of glucose and FBS were both high, the
tumors had roughly spherical shapes with bulbous protrusions on the sur-
face. The tumors shed cells that strongly connected with each other, creating
networks. See the upper right plot in Figure A.18. Very interestingly, if FBS
can be correlated with the permeability of the ECM to tumor cells (in this
case, the ECM is created by the tumor cells themselves), then this behavior
correlates very well with our predictions using the parameters D and µ (high
glucose and FBS levels correspond to large D and µ, respectively). This will
be a subject of future study.

Now that the general capabilities of the basic model have been demonstrated,
we are working to extend the realism of our simulator by modeling additional
biophysical effects, including more detailed modeling of the internal structure
of the tumors and the surrounding tissue. In collaboration with A.R.A. Ander-
son, M.A.J. Chaplain, V. Cristini, and S.R. McDougall, we are fully coupling
our tumor growth model with the DATIA (dynamic adaptive tumour-induced
angiogenesis) model of McDougall et al. (2006). With our improved models,
we plan to further investigate the dynamics of tumor growth, the complex
interplay between the microenvironment and the tumor, and possibilties for
improved therapies. With an improved model in hand, we hope to calibrate it
to specific cancers, allowing for specific predictions that can be verified in a
laboratory setting. Our ultimate goal is the development of efficient, effective,
and eventually individualized treatment regimens.
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A Improvements to the Ghost Fluid Method

We now describe a second-order accurate extension of the ghost fluid method
(Fedkiw et al., 1999; Liu et al., 2000; Gibou et al., 2002, 2003; Gibou and
Fedkiw, 2005) to solve the Poisson-like system

α∇2u = f1(x, t) + f2(x, t)u in Ω and ΩH (A.1)

[u] = g(x, t) on Σ (A.2)

[α∇u · n] = 0 on Σ (A.3)

u ≡ uO on ∂(Ω ∪ ΩH) (A.4)

on arbitrary domains embedded in a rectangular domain Ωcomp, where

α =





αT in Ω

αH in ΩH ,
(A.5)

and αT and αH are positive constants.

In Macklin and Lowengrub (2005), we developed a second-order accurate ex-
tension of the ghost fluid method to solve this system in the case where ΩH = ∅
and [α∇u · n] is not specified on the boundary Σ. We now extend the method
to solve the present system.

We discretize each partial derivative of α∇2u separately, and so we can fo-
cus our attention on the discretization of αuxx at a node point xi ∈ Ω. If
xi−1 = xi − ∆x and xi+1 = xi + ∆x are both contained in Ω, then we dis-
cretize αT uxx with the standard second-order stencil:

αT uxx = αT
u(xi−1)− 2u(xi) + u(xi+1)

∆x2
+O(∆x2). (A.6)

However, if xi+1 ∈ ΩH , then the boundary must separate xi and xi+1 at some
point xΣ = xi + θ∆x, where 0 < θ < 1. In this scenario, we must modify our
stencil by first extending the solution in Ω to a “ghost fluid point” û(xi+1)
in ΩH ; we replace u(xi+1) by û(xi+1) in the discretization of αT uxx in (A.6).
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See Figure A.19. We proceed by a quadratic extrapolation of u from u(xi−2),

u(xi−1), and u(xΣ)
∣∣∣
Ω

= limx↑xΣ
u(x) to û(xi+1).

We discretize (A.2) by

u(xΣ)
∣∣∣
Ω

= u(xΣ)
∣∣∣
ΩH

+ g(xΣ, t), (A.7)

where the jump notation is as defined in (9). If g is a function that is only
defined at mesh points, then we evaluate g(xΣ, t) by cubic interpolation of
g(xi−1, t), g(xi, t), g(xi+1, t), and g(xi+2, t).

We discretize (A.3) by

αT

u(xΣ)
∣∣∣
Ω
− u(xi−1)

(1 + θ)∆x
= αH

u(xi+2)− u(xΣ)
∣∣∣
ΩH

(2− θ)∆x
. (A.8)

This discretization is similar to the discretization of Liu et al. (2000), although
we use different points in the discretization for improved numerical stability.
We note that this discretization approximates the jump condition [α∇u · n]
as [αux] = 0 and [αuy] = 0 when discretizing the x- and y-derivatives. (In
three dimensions, [αuz] = 0 as well.) This is equivalent to assuming that
the interface cuts the stencil at a right angle. Wherever this assumption is
inaccurate, any tangential jump in α∇u is partially smeared out numerically.
This limitation is characteristic of all current ghost fluid methods and is a
trade-off for the dimension-by-dimension simplicity of the discretization. We
are currently investigating solutions to this problem.

By combining (A.7) and (A.8), we can completely eliminate u(xΣ)
∣∣∣
Ω

and

u(xΣ)
∣∣∣
ΩH

from the discretization of αT uxx. This allows the discretization of

the entire Poisson system to be written in the form of a linear system Lu = b,
which can be solved by standard linear solvers. In our work, we used the
stabilized biconjugate gradient method BiCG-Stab(2). (van der Vorst, 1992;
Sleijpen et al., 1994; Duff et al., 1998) The case where xi−1 /∈ Ω is handled
analogously, and the discretization of αHuxx is similar. We discretize the far-
field boundary condition (A.4) as in Macklin and Lowengrub (2005), where
we define ΩO = Ωcomp\(Ω ∪ ΩH) to be the far field tissue and set

1

∆x2
u(xi) =

1

∆x2
uO, x ∈ ΩO. (A.9)

This dimension-by-dimension discretization allows the use of the same method
in both 2D and 3D problems, transforms the difficult problem of solving a
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diffusional problem on an arbitrary domain to the simpler problem of diffusion
on a rectangle, and is easy to extend to greater accuracy.

In our testing, we found this method to be second-order accurate. (See Section
3.2 for convergence testing results.) We are investigating the numerical smear-
ing of tangential jumps in α∇u, but our technique is currently the state-of-the
art in solving Poisson-like systems on arbitrary evolving domains when using
the ghost fluid approach. An alternative approach for overcoming the tangen-
tial smearing problem is the immersed interface method, which requires the
use of local coordinates (based on the normal and tangential directions of the
interface) to modify the discretization (Leveque and Li, 1994).
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Fig. A.1. Diagram of the regions in and near a growing tumor: the tumor Ω is
comprised of viable (proliferating and quiescent) cells in ΩV and necrotic cells in
ΩN . The noncancerous tissue surrounding tissue surrounding the tumor, denoted
by ΩH , is affected by the growing tumor, and portions of ΩH may be encapsulated
by the growing tumor. Lastly, the noncancerous tissue ΩO is not affected by the
growing tumor.
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Fig. A.3. Numerical Convergence: Tumor morphology at t = 0.15 at low resolution
(upper left), medium resolution (upper right), and high resolution (lower left). The
dark region denotes the necrotic core ΩN where σ ≤ N = 0.35, and the gray regions
show the viable region ΩV . In the lower right plot, we compare the position of
the tumor boundary at low resolution (dotted curve), medium resolution (dashed
curve), and high resolution (solid curve).
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Fig. A.4. Tumor morphological response to the microenvironment. The external
tissue nutrient diffusivity D increases from left to right, and the external tissue
mobility µ increases from bottom to top. Three major morphologies are observed:
fragmenting growth (left), invasive fingering (lower right), and compact/hollow (up-
per right). All tumors are plotted to the same scale, where the indicated length is
25L ≈ 0.5 cm.
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Fig. A.5. Long time simulation of fragmenting growth into nutrient-poor (D = 1),
high-mobility (µ = ∞) tissue. Plots are in T = 10.0 increments, G = 20, GN = 1,
N = 0.35, and A = 0.
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Fig. A.7. Top Row: Evolution of the shape parameter S (solid curves) and length
scale LS (dashed curves) for fragmenting tumor growth into nutrient-poor tissue.
The left plot is for growth into high-mobility tissue (D = 1, µ = ∞), and the right
plot is for growth into low-mobility tissue (D = 1, µ = 1). Bottom Row: Evolution
of the viable and necrotic volume fractions for the high-mobility case (µ = ∞; left
plot) and low-mobility case (µ = 1; right plot).
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Fig. A.8. Comparison of fragmenting tumor growth into high-mobility tissue
(µ = ∞, left plots) and low-mobility tissue (µ = 1, right plots) at T = 60.0 and
T = 70.0.
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Fig. A.9. Parameter study in G and GN for fragmenting tumor growth into nu-
trient-poor, low-mobility tissue (D = 1, µ = 1). The tumor aggressiveness param-
eter G increases from bottom to top, and the necrotic degradation parameter GN

increases from left to right.
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Fig. A.10. The effect of N on fragmenting tumor growth into nutrient-poor, low–
mobility tissue (D = 1, µ = 1): From left to right: N = 0.175, N = 0.350, and
N = 0.700. The top row gives the morphology at T = 20.0, and the bottom row
plots the shape parameter S (solid curves) and length scale LS (dashed curves).
G = 20, GN = 1, and A = 0 for all three simulations.
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Fig. A.11. Long time simulation of invasive, fingering growth into nutrient-rich
(D = 50), low-mobility (µ = 1) tissue. Plots are in T = 10.0 increments, G = 20,
GN = 1, N = 0.35, and A = 0.
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Fig. A.12. Contours of the nutrient concentration (left) and pressure (right) between
growing fingers from the previous simulation at time T = 20.0. In the nutrient figure,
the black region denotes where σ < N , and in the pressure figure, the boundary of
the necrotic core is given by the white curve. Notice that the pressure gradient is
primarily parallel to the fingers.
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Fig. A.13. Evolution of the shape parameter S (top left), length scale LS (top right),
perimeter (bottom left), and viable tumor area (bottom right) for invasive, fingering
growth into nutrient-rich, low-mobility tissue (thin curves: µ = 0.25, thick curves:
µ = 1). In all plots, dotted lines are for D = 50, dashed lines are D = 100, and solid
lines are D = ∞.
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Fig. A.14. Parameter study in G and GN for invasive, fingering tumor growth into
nutrient-rich, low-mobility tissue (D = 50, µ = 1). The tumor aggressiveness pa-
rameter G increases from bottom to top, and the necrotic degradation parameter
GN increases from left to right.
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Fig. A.15. Long time simulation of compact tumor growth into nutrient-rich, high–
mobility tissue (D = 100, µ = 50). Plots are in T = 10.0 increments, with G = 20,
GN = 1, N = 0.35, and A = 0.0.
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Fig. A.16. Evolution of the shape parameter S (left) and length scale LS (right) for
compact growth into nutrient-rich, high-mobility tissue (thin curves: µ = 50, thick
curves: µ = ∞). In all plots, dotted curves are for D = 50, dashed curves designate
D = 100, and solid curves give D = ∞.
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Fig. A.17. Parameter study in G and GN for compact tumor growth into nutrien-
t-rich, high-mobility tissue (D = 50, µ = ∞). The tumor aggressiveness parameter
G increases from bottom to top, and the necrotic degradation parameter GN in-
creases from left to right.
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Fig. A.18. in vitro experimental evidence from the study by Frieboes et al. (2006b)
of predicted tumor morphologies. Lower left: low glucose, 1% FBS. Lower right:
high glucose, 1% FBS. Upper left: low glucose, 10% FBS. Upper right: high
glucose, 10% FBS.
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Fig. A.19. Discretizing α∇2u across the interface at xΣ by a ghost fluid extension
to ûi+1. Care must be taken to enforce the jump boundary conditions [u] = g and
[α∇u · n] = 0.
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