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Patient-calibrated agent-based modelling of

ductal carcinoma in situ (DCIS): From

microscopic measurements to macroscopic

predictions of clinical progression

Paul Macklin 1,2,3,4, Mary E. Edgerton 5,
Alastair M. Thompson 5,6, Vittorio Cristini 4,7

Abstract

Ductal carcinoma in situ (DCIS)—a significant precursor to invasive breast cancer—
is typically diagnosed as microcalcifications in mammograms. However, the effective
use of mammograms and other patient data to plan treatment has been restricted
by our limited understanding of DCIS growth and calcification. We develop a mech-
anistic, agent-based cell model and apply it to DCIS. Cell motion is determined by
a balance of biomechanical forces. We use potential functions to model interactions
with the basement membrane and amongst cells of unequal size and phenotype.
Each cell’s phenotype is determined by genomic/proteomic- and microenvironment-
dependent stochastic processes. Detailed “sub-models” describe cell volume changes
during proliferation and necrosis; we are the first to account for cell calcification.

We introduce the first patient-specific calibration method to fully constrain the
model based upon clinically-accessible histopathology data. After simulating 45 days
of solid-type DCIS with comedonecrosis, the model predicts: necrotic cell lysis acts
as a biomechanical stress relief, and is responsible for the linear DCIS growth ob-
served in mammography; the rate of DCIS advance varies with the duct radius;
the tumour grows 7 to 10 mm per year—consistent with mammographic data; and
the mammographic and (post-operative) pathologic sizes are linearly correlated—in
quantitative agreement with the clinical literature. Patient histopathology matches
the predicted DCIS microstructure: an outer proliferative rim surrounds a stratified
necrotic core with nuclear debris on its outer edge and calcification in the cen-
tre. This work illustrates that computational modelling can provide new insight on
the biophysical underpinnings of cancer. It may one day be possible to augment a
patient’s mammography and other imaging with rigorously-calibrated models that
help select optimal surgical margins based upon the patient’s histopathologic data.

Key words: agent-based model, tumour simulation, comedonecrosis, DCIS, ductal
carcinoma in situ, biomechanics, calcification, patient-specific calibration
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1 Introduction

Ductal carcinoma in situ (DCIS), a type of breast cancer where growth is
confined within the breast ductal/lobular units, is the most prevalent precur-
sor to invasive ductal carcinoma (IDC). Breast cancer is the second-leading
cause of death in women in the United States. The American Cancer Society
predicted that 50,000 new cases of DCIS alone (excluding other pre-invasive
cancers such as lobular carcinoma in situ) and 180,000 new cases of IDC
would be diagnosed in 2007 (Jemal et al., 2007; American Cancer Society,
2007). Co-existing DCIS is expected in 80% of IDC (Lampejo et al., 1994).
While DCIS itself is not life-threatening, it is clinically important because it
can be effectively treated and if left untreated, it has a high probability of
progression to IDC (Page et al., 1982; Kerlikowske et al., 2003; Sanders et al.,
2005). While the detection and treatment of DCIS have greatly improved over
the last few decades, problems persist. DCIS can be difficult to detect by
mammography (the principal modality in breast screening) or to distinguish
from other aberrant lesions (Venkatesan et al., 2009). This can lead to “false
positives” of DCIS and overtreatment, including unnecessary surgery. When
excision is warranted, re-surgery is required in 20-50% of cases to fully elimi-
nate all DCIS (Talsma et al., 2011), highlighting difficulties in estimating the
full DCIS extent from patient imaging (Cheng et al., 1997; Silverstein, 1997;
Cabioglu et al., 2007; Dillon et al., 2007). A solid scientific understanding of
DCIS progression is required to improve surgical and therapeutic planning.

Open questions on DCIS biology contribute to current uncertainty in clinical
practice. How does DCIS progress from a few proliferating cells to detectable
lesions potentially including microcalcifications? Can immunohistochemistry
(IHC) and histopathology be used to estimate important physiological con-
stants? Can mathematical modelling provide new insight on interpreting these
data? What is the relationship between the microcalcifications observed in
mammography and tumour morphology? Can we calibrate patient-specific
models to limited and noisy histopathologic data, often from only a single
time point? These clinically-pertinent scientific questions motivate our work.
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Mathematical modelling has already seen use in understanding and predict-
ing the growth and dynamics of DCIS. Franks et al. (2003a,b, 2005); Owen
et al. (2004) used continuum models to investigate tumour growth in breast
ducts, including the impact of volume loss in the necrotic core, ductal ex-
pansion, and the influence of basement membrane (BM) adhesion; this work
can be traced to a long history of work (e.g., Ward and King (1997)) that
includes matching to experiments. Rejniak (2007); Rejniak and Dillon (2007);
Rejniak and Anderson (2008a,b); Dillon et al. (2008) applied an immersed
boundary method to individual polarised cells; their model was able to re-
produce several complex DCIS sub-types. Norton et al. (2010) conducted a
similar investigation of the relationship between polarised cell adhesion, intra-
ductal pressure, and DCIS morphology in 2D using a lattice-free agent model
and were able to produce nontrivial (e.g., cribriform) tumour microstructures.
Gatenby et al. (2007); Silva et al. (2010); Smallbone et al. (2007) investigated
the role of hypoxia, glycolysis, and acidosis in DCIS evolution in 2D and 3D
using cellular automata (CA) methods by including detailed metabolic sub-
models. Mannes et al. (2002) used 2-D CA methods to investigate Pagetoid
spread. Bankhead III et al. (2007) conducted early 3-D simulations of tu-
mour cell hierarchy using CA techniques. Sontag and Axelrod (2005) combined
population-scale models with machine learning techniques and statistical anal-
yses to postulate new hypotheses on DCIS mutation pathways from benign
precursors; Enderling et al. (2006, 2007) used continuum and CA methods
to study mutations within DCIS and recurrence following radiotherapy. Very
recently, Kim et al. (2011) used a detailed agent-based model to study inter-
actions between DCIS cells and stromal cells via TGF-β and EGF signalling;
their work included the effects of basement membrane expansion.

All this work has provided a degree of insight into DCIS, but has not fully
answered the questions we posed. Typical CA methods cannot accurately
model cell mechanics, particularly proliferation by tumour cells when fully
surrounded by other cells; such proliferation is regularly observed in DCIS im-
munohistochemistry. Population-based ordinary differential equation (ODE)
models do not account for spatial heterogeneity and cannot investigate the im-
pact of heterogeneous mechanics, substrate transport, and their interaction.
To date, none have modelled calcification, and existing necrosis sub-models
have not considered the effects of cell swelling and lysis; many prevalent mod-
els ignore necrosis. The work by Norton et al. (2010) shows promise, but it has
yet to predict tumour biophysics as emergent phenomena because it imposed
many of its key properties a priori as algorithmic rules. The impressive mor-
phological model of Rejniak and colleagues faces computational limits when
applied to large numbers of cells. Continuummodels can overcome these limits,
but calibration to molecular- and cell-scale data is not straightforward (Mack-
lin et al., 2010b). To our knowledge, there has been no prior patient-specific
calibration to the proliferative and apoptotic indices generally measured in
breast biopsies at any scale of modelling for DCIS (or for any type of cancer).
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Modelling approach and advances: We presently develop a lattice-free,
agent-based cell model that can be applied to many problems, exemplified
by DCIS. Cells (agents) are modelled as physical objects that exchange and
respond to adhesive, repulsive, and motile forces that determine their motion;
essential molecular biology is incorporated through carefully-chosen constitu-
tive relations. Cell-cell and cell-BM interaction mechanics are modelled using
potential functions that account for finite interaction distances, uncertainty in
cell morphology and position, and interaction between cells of variable sizes
and types. We introduce a level set formulation of the basement membrane
morphology that provides a generalised framework for the exchange of forces
between discrete cell objects and extended macroscopic objects with nontriv-
ial, evolving geometries. Each cell is endowed with a phenotypic state, and
phenotypic transitions are governed by exponentially-distributed random vari-
ables that depend upon the cell’s internal state and the local microenviron-
ment. This modelling choice–a natural extension of constant probability per
constant time step models in prevalent use today–is consistent with experi-
mental biology (e.g., Smith and Martin (1973)), provides a rigorous method to
vary the model’s probabilities with the microenvironment, allows for variable
time step sizes, and lends itself to mathematical analysis.

We include detailed “sub-models” of cell volume change during proliferation
and necrosis. Our necrosis model, which includes cell swelling and lysis, is the
most biologically detailed to date. We are the first to model and investigate
cellular calcification. We couple the agents to the microenvironment by solv-
ing reaction-diffusion equations for substrates that are altered by the cells.
To make the model predictive, we constrain all major model parameters by
surveying a broad swath of the experimental and theoretical biology literature.

We provide the first patient-specific model calibration protocol that estimates
the population dynamic and mechanical parameters based upon IHC for pro-
liferation (Ki-67), apoptosis (cleaved Caspase-3), and morphometric measure-
ments from haematoxylin and eosin (H&E) histopathology images at a single
time point, thus avoiding the inherently inaccurate problem of estimating time
derivatives from noisy patient data. To our knowledge, this is the first patient-
specific cancer calibration method that is based solely upon measurements
that we could reasonably expect from a single patient biopsy. Our calibrated
model is capable of making testable, quantitative patient-specific predictions
of clinical behaviour (see below). Hence, an additional novelty of our work
is that we fully document the process of developing a state-of-the-art agent
model that is tailored to cancer biology, fully constraining it with biologically-
relevant parameter estimates and a first-of-its-kind patient-specific calibration
to pathology, and generating clinical predictions that are validated against the
clinical literature. A preliminary version of this work appeared in Macklin et al.
(2009a, 2010b,a); this paper refines the model, improves the calibration, and
focuses on significant new results, with in-depth validation and analysis.
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Main results: We use our model to study solid-type DCIS with comedone-
crosis–a central necrotic core that is associated with more frequent recurrence
of DCIS and poorer patient prognosis (Ottesen et al., 2000; Yagata et al.,
2003). We calibrate our model to archived tissue data from Edgerton et al.
(2011) and verify that the calibrated model successfully replicates our patient
input data, thus demonstrating the feasibility of calibrating mathematical
models based upon patient histopathologic data from a single time point. Away
from the tumour’s leading edge, the simulated spatiotemporal dynamics reach
a steady state after 7 to 14 days, consistent with a basic population dynamic
model analysis and our prior continuum work (Macklin and Lowengrub, 2007).

Based solely upon calibration to microscopic measurements, we make and test
macroscopic biological and clinical predictions. The model predicts that DCIS
tumours grow at a constant rate through the duct, in agreement with mam-
mographic data. Necrotic core biomechanics play a key role in this finding:
necrotic cell lysis acts as a mechanical stress relief that redirects proliferative
cell flux towards the duct centre, rather than along the duct. Due to this mech-
anism, the model predicts that growth is slowest in large ducts with greater
capacity to absorb proliferative flux. The model predicts DCIS growth rates
between 7.5 and 10.2 mm/year, in quantitative agreement with published clin-
ical data. While the “mammographic image error”–the distance between the
calcification and the leading tumour boundary–increases over clinically rele-
vant times, a DCIS tumour’s mammographic size is linearly correlated with its
pathologic size; this is supported by the clinical literature. A linear extrapola-
tion of the model-predicted correlation demonstrates an excellent agreement
with 87 published patient data points spanning two orders of magnitude.

The model also makes microscopic predictions that match clinical data. Fast
necrotic cell lysis at the perinecrotic boundary creates a physical gap between
the viable rim and the necrotic core; this phenomenon is frequently observed
in patient histopathology. The simulated tumours develop a stratified necrotic
core, with increasing pyknosis (nuclear degradation) and calcification towards
the duct centre; this is observed in patient histopathology. The model also
predicts that calcification increases with distance from the tumour’s leading
edge. The current model only predicts casting-type calcifications. Hence, we
hypothesise that other biophysics–such as heterogeneous adhesive forces, cellu-
lar secretions, and degradation of the calcifications over long time scales–must
be responsible for other types of calcifications observed in mammograms.

These successful quantitative predictions at the microscopic and macroscopic
scales suggest that it may soon be possible to use a well-calibrated simulator
to create a patient-specific map between the microcalcification geometry (as
observed in mammography) and the actual tumour morphology. This could
allow surgeons to more precisely plan DCIS surgical margins while removing
less non-cancerous tissue, and could improve targeting of radiotherapy.
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Paper organisation: After detailing our agent-based model (Section 2),
we apply it to DCIS with comedonecrosis (Section 3). After summarising the
computational method (Section 4) and patient-independent parameter esti-
mates (Section 5), we detail our patient-specific calibration protocol (Section
6). After calibrating to archived DCIS patient tissue and verifying the calibra-
tion (Section 7), we simulate 45 days of DCIS growth and present our clinical
predictions in Section 8, with extensive validation against independent clinical
data. Discussion and future directions are found in Section 9.

Supplementary material: We include a sampling of significant agent-
based modelling beyond DCIS, model generalisations, and further theoretic
discussions. We conduct a volume-averaging analysis (key to the calibration
protocol). We include full numerical implementation details and introduce a
new open standard for sharing multicell agent-based model simulation data
(MultiCellXML). We detail our parameter estimates and further analyse our
model calibration. We provide additional simulation results, a full simulation
data set with open source tools, and animations. See our dedicated webpage. 8

2 Agent-Based Cell Model

We now fully elaborate a discrete, cell-scale modelling framework that we pre-
liminarily introduced in Macklin et al. (2009a, 2010b). See the supplementary
material for a sampling of major agent-based modelling beyond DCIS, as well
as recent reviews (Lowengrub et al., 2010; Macklin et al., 2010b). The model
is broadly applicable to the epithelial, stromal, and immune cells involved in
carcinoma and sarcoma. Its modular design allows “sub-models” (e.g., molec-
ular signalling) to be expanded, simplified, or outright replaced as necessary.
Where possible, we choose simple sub-models and test the model framework’s
success in recapitulating correct DCIS behaviour.

We attempt to model the mechanics, time duration, and biology of each pheno-
typic state as accurately as our data allow; this should facilitate calibration to
molecular- and cellular data. The agents interact with the microenvironment
through coupled partial differential equations governing substrate transport.
We use the same model for both cancerous and non-cancerous cells. Function-
ally, the cells differ primarily in the values of their proliferation, apoptosis,
and other parameters; this is analogous to the downstream effects of altered
oncogenes and tumour suppressor genes (Hanahan and Weinberg, 2000).

In this work, cells are not polarised, and we neglect stem cell dynamics; this

8 http://www.mathcancer.org/JTB DCIS 2012/
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Fig. 1. Cell morphology and mechanics: Left: We track the cell volume V and
nuclear volume VN (with equivalent spherical radii R and RN, as labelled here); pale
grey denotes the cytoplasm (VC), and the darker grey denotes the nucleus (VN). The
unknown cell morphology (one possible realisation given as a dashed red curve) has
an equivalent spherical morphology (solid blue curve). RA is the maximum adhesive
interaction distance. Right: We account for uncertainty in the cell morphology by
allowing the equivalent radii to overlap (left two cells), and by allowing adhesive
contact beyond their equivalent radii (right two cells).

is readily added by including a lineage model with each cell agent. Thus, we
focus on the tumour growth dynamics, rather than initiation. We do not model
cell morphology, but rather total, nuclear, and cytoplasmic volume. Where cell
morphology is necessary, we approximate it as spherical, similarly to Ramis-
Conde et al. (2008a,b). This approximation is further discussed in Section
2.1. Basement membranes are modelled using level set functions (Section 2.2),
which could model BM deformations (Macklin et al., 2010b).

2.1 Physical characteristics and mechanics

We endow each cell with a position x, velocity v, total volume V , cytoplasmic
volume VC, and nuclear volume VN . We assume that x and v are at the cell’s
centre of mass and volume. While we do not track the cell morphology, we
find the equivalent cell and nuclear radii (respectively R and RN) via

V =
4

3
πR3, VN =

4

3
πR3

N. (1)

See Fig. 1:left. For simplicity, we assume VN is fixed throughout the cell cycle.
Each cell has a maximum adhesion interaction distance RA ≥ R, which we
use to express several effects. Because cells are deformable, they can stretch
beyond R to maintain or create adhesive bonds. As we do not explicitly track
the cell morphology, there is inherent uncertainty as to maximum extent of
the cell boundary relative to its centre of mass; RA needs to be sufficiently
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large to account for this. This effect is increased by random actin polymeri-
sation/depolymerisation dynamics, which serve to randomly perturb the cell
boundary (Gov and Gopinathan, 2006). See Fig. 1:right.

The cells are allowed to partly overlap to account for cell deformation. (Fig. 1:
right.) We model the relative rigidity of the nucleus (relative to the cytoplasm)
by introducing increased mechanical resistance to compression at a distances
less than RN from the cell centre; see Sections 2.3.1 and 2.3.2. Note that as
RN ↑ R (most of the cell resists compression) or RA ↓ R (cells cannot deform
to maintain adhesive contact), the cells behave like a granular material.

2.2 Basement membrane morphology

Let us denote the epithelium and lumen (the intraductal space when applied
to DCIS) by Ω and the basement membrane by ∂Ω. We represent ∂Ω implicitly
with an auxiliary signed distance function d (a level set function) satisfying

d(x) > 0 x ∈ Ω

d(x) = 0 x ∈ ∂Ω

d(x) < 0 x /∈ Ω = Ω ∪ ∂Ω.

(2)

Additionally, |∇d| ≡ 1. This formulation can describe arbitrary BM geometries
such as branch points in breast duct tree structures. The normal vector n to
the BM surface (oriented into the epithelium) is n = ∇d, and ∇ · n gives
the mean geometric curvature of the BM. This implicit representation is well-
suited to describing a moving BM as it is deformed by mechanical stresses
(e.g., due to proliferating tumour cells, as in Ribba et al. (2006)). See Macklin
and Lowengrub (2005, 2006, 2007, 2008); Frieboes et al. (2007); Macklin et al.
(2009b), where we used this method to describe moving tumour boundaries.

2.3 Forces acting upon the cells

Cells adhere to other cells (various cell-cell adhesion mechanisms: Fcca), the
extracellular matrix (cell-ECM adhesion: Fcma), and the basement membrane
(cell-BM adhesion: Fcba). Cells resist compression by other cells (cell-cell repul-
sion: Fccr). The BM resists its penetration and deformation by cells (cell-BM
repulsion: Fcbr). Motile cells experience a net locomotive force Floc, and mov-
ing cells experience a drag force Fdrag = −νvi by the luminal and interstitial
fluids. See Fig. 2. We neglect any interstitial fluid pressure; this is equivalent to
assuming the free flow of water, similarly to current continuum-scale mixture
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Fig. 2. Agent model forces: On Cell 5, find labelled the cell-cell adhesive (F5j
cca)

and repulsive (F5j
ccr) forces, and the cell-BM adhesive (F5

cba) and repulsive (F5
cbr)

forces. We label the net cell locomotive force Fi
loc for Cell 6 (undergoing motility

along the BM) and Cell 7 (undergoing motility within the ECM). We show the
cell-ECM adhesive force (F7

cma) and fluid drag (F7
drag) for Cell 7. An earlier version

of this figure appeared in advance in Macklin et al. (2009a, 2010b).

models (e.g., as in Wise et al. (2008)). Newton’s second law gives the balance
of forces acting on cell agent i:

miv̇i=

cell-cell interactions︷ ︸︸ ︷
N(t)∑
j=1
j ̸=i

(
Fij

cca + Fij
ccr

)
+

cell-BM
interactions︷ ︸︸ ︷

Fi
cba + Fi

cbr +

cell-medium
interactions︷ ︸︸ ︷

Fi
cma + Fi

drag+Fi
loc. (3)

Here, N(t) is the number of agents in the simulation at time t. The force
terms are state-, time-, and microenvironment-dependent; apply to live and
dead cell agents; and are governed by individual biological constitutive laws.
We set Floc = 0 to focus on the adhesive and repulsive forces. We set Fcma = 0
in any lumen; see the supplementary material for a more general form.

2.3.1 A simple family of potential functions

As in Drasdo et al. (1995); Drasdo and Höhme (2003, 2005); Drasdo (2005);
Ramis-Conde et al. (2008a,b); Byrne and Drasdo (2009), we model cell-cell
biomechanical interactions with potential functions (φ for adhesion; ψ for
mechanical resistance/repulsion). We define φ and ψ by their gradients; the
forms below are updated from Macklin et al. (2009a, 2010a,b). See Byrne
and Drasdo (2009) for a good discussion on modelling cell-cell interactions
with potential functions. Ramis-Conde et al. (2008a,b) recently tied potential
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functions to detailed models of E-cadherin/β-catenin dynamics.

−0.1

 0.0

 1.5
cccaφ + cccrψ

0 RN
s R RAr

−0.1

 0.0

 0.5
−

∂

∂ r
( cccaφ + cccrψ)

0 RN
s R RAr

Fig. 3. Potential functions and derivatives for m = n = 1, M = 1, R = 10,
RA = 12, RN = 5, cccr = 1, and ccca = 0.5184; s = 7 is the equilibrium spacing
between two interacting cells, where−∇ (cccrψ + cccaφ) = 0. cccr and ccca are defined
in the following sections. Left : cccrψ + cccaφ. Right : − ∂

∂r (cccrψ + cccaφ).

Let RA be the maximum adhesive interaction distance. For any n ∈ N, define

∇φ(r;RA, n) =


(
1− |r|

RA

)n+1
r
|r| , 0 ≤ |r| ≤ RA

0 else.
(4)

Note that ∇φ has compact support, to model the finite interaction distance
between cells. The baseline case n = 0 is a linear ramping to the maximum
force when |r| = 0. For n > 0, φ tapers off smoothly.

Similarly, if m is a fixed nonnegative integer, RN is the nuclear radius, R is
the cell’s radius, and M ≥ 1 is the cell’s maximum repulsive force, define

∇ψ(r;RN, R,M,m) =


−
(
c |r|
RN

+M
)

r
|r| 0 ≤ |r| ≤ RN

−
(
1− |r|

R

)m+1
r
|r| RN ≤ |r| ≤ R

0 else,

(5)

where

c =

((
1− RN

R

)m+1

−M

)
. (6)

As with φ, ψ and its derivatives have compact support; this models the fact
that cells only repel one another when they are in physical contact. We make
ψ linear in the nuclear region (with M ≥ 1) to model a stiffer material and
allow the nuclear and cytoskeletal mechanics to be specified independently.

Although it is not necessary for our model, we can obtain φ and ψ by directly
integrating ∇φ and ∇ψ with respect to |x| and setting φ ≡ 0 on |x| = RA
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and ψ ≡ 0 on |x| = R. In Fig. 3, we plot a linear combination of φ and ψ
(left) and ∇φ and ∇ψ (right) that illustrates their use in the forces below.

2.3.2 Cell-cell adhesion (Fcca) and repulsion (Fccr):

Adhesion receptors on a cell’s surface bond with adhesive ligands (target
molecules) on nearby cells. Hence, the strength of the adhesive force between
the cells is (to first order) proportional to the product of the receptor and lig-
and expressions. The adhesion strength increases as the cells are drawn more
closely together, bringing more surface area (and receptor-ligand pairs) into
direct contact. We model the force imparted by cell j on cell i by

Fij
cca = −cccafi,j∇φ

(
xj − xi;R

i
A +Rj

A, ncca

)
, (7)

where fi,j describes the specific molecular biology of the adhesion, Ri
A is cell

i’s maximum adhesion interaction distance, and ccca is constant. Note that
this form takes into account the deformability of both cells by using Ri

A+Rj
A.

In homophilic adhesion (e.g., epithelial cell adhesion by E-cadherin (Panorchan
et al., 2006)), adhesion receptors E bond with identical ligands E . Hence,

fi,j = EiEj, (8)

where Ei is cell i’s (nondimensionalised) E receptor expression.

Calcite crystals in partly- and wholly-calcified necrotic cells remain strongly
bonded in microcalcifications. We model this as homophilic cell-cell adhesion.
If Ci is the nondimensional degree of calcification (see Section 2.5.4), then the
general homophilic cell-cell adhesive form is

fi,j = EiEj + CiCj. (9)

Note that Ei and Ci are time- and state-dependent: Ci = 0 in non-necrotic
cells; Ei is degraded and Ci increases in necrotic cells, allowing simultaneous
E-cadherin- and calcite-based adhesion during necrosis (Section 2.5.4).

Cells resist compression by other cells due to the structure of their cytoskele-
tons, the incompressibility of their cytoplasm, and the surface tension of their
membranes. We introduce a cell-cell repulsive force that is zero when cells are
just touching, and increases rapidly as the cells are pressed together, particu-
larly when their nuclei are in close proximity. We model Fccr by

Fij
ccr = −cccr∇ψ

(
xj − xi;R

i
N +Rj

N, Ri +Rj,M, nccr

)
, (10)

where cccr is a constant, Ri
N and Ri are cell i’s nuclear radius and radius,

respectively, and M and nccr are described above.
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2.3.3 Cell-BM adhesion (Fcba) and repulsion (Fcbr):

Integrin molecules on the cell surface form heterophilic bonds with specific
ligands LB (generally laminin and fibronectin (Butler et al., 2008)) on the
basement membrane (with density 0 < B < 1). We assume that LB is dis-
tributed proportionally to the (nondimensional) BM density B. Hence, the
strength of the cell-BM adhesive force is proportional to its integrin surface
receptor expression and B. Furthermore, the strength of the adhesion increases
as the cell approaches the BM, bringing more cell adhesion receptors in contact
with their ligands on the BM. We model this adhesive force on cell i by

Fi
cba = −ccbaIB,iB∇φ

(
d(xi)n (xi) ;R

i
A, ncba

)
, (11)

where ccba is a constant, d is the distance to the basement membrane, n
is normal to the basement membrane (see Section 2.2), ncba is as described
above, and Ri

A and IB,i are cell i’s maximum adhesion interaction distance
and (nondimensionalised) integrin receptor expression, respectively. Setting
the maximum interaction distance to Ri

A is consistent with our modelling
simplification that the basement membrane is non-deformable. We model the
BM’s resistence to deformation and penetration by cells and debris by

Fi
cbr = −ccbrB∇ψ

(
d(xi)n (xi) ;R

i
N, Ri,M, ncbr

)
, (12)

where ccbr is a constant, d is the distance to the BM, Ri
N and Ri are described

earlier, and M and ncbr are described above.

2.4 “Inertialess” assumption

Similarly to Drasdo et al. (1995); Galle et al. (2005); Ramis-Conde et al.
(2008b) and as discussed in Lowengrub et al. (2010), we make the “inertialess”
assumption that the forces equilibrate quickly, and so |miv̇i| ≈ 0. Hence, we
approximate

∑
F = 0 and solve for the cell velocity from Eq. 3:

vi=
1

ν + ccmaIE,iE

N(t)∑
j=1
j ̸=i

(
Fij

cca + Fij
ccr

)
+ Fi

cba + Fi
cbr + Fi

loc

 . (13)

This has a convenient interpretation: each term 1
ν+ccmaIE,iE

F� is the “terminal”

(equilibrium) velocity of the cell when fluid drag, cell-ECM adhesion, and F�
are the only forces acting upon it. Here, “�” represents any individual force
above, e.g., cba, cca, etc., and N(t) is the number of simulated cells at time
t. The coefficient 1/ (ν + ccmaIE,iE) can be directly related to Darcy’s law in
several tumour models; see the supplementary material.
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2.5 Cell phenotypic states

We endow each agent with a phenotypic state S(t) in the state space
{Q,P ,A,H,N} (introduced below). Quiescent cells (Q) are in a “resting
state” (G0, in terms of the cell cycle); this is the “default” state in the
framework. We model transitions between cell states as stochastic events gov-
erned by exponentially-distributed random variables that are linked to the
cell’s genetic and proteomic state, as well as the microenvironment. These
exponentially-distributed variables can be regarded as arising from nonhomo-
geneous Poisson processes; a brief discussion is in the supplementary material.

For a transition to state S2 from the current state S1, and for any interval
(t, t+∆t], we use the general form

Pr (S(t+∆t) = S2|S(t) = S1) = 1− exp

(
−
∫ t+∆t

t
α12(S, •, ◦)(s) ds

)
, (14)

where α12 (S, •, ◦) (t) is the intensity function, • represents the cell’s internal
(genetic and proteomic) state, and ◦ represents the state of the surrounding
microenvironment sampled at the cell’s position x(t). Note that for small ∆t,

Pr (S(t+∆t) = S2|S(t) = S1) = α12 (S, •, ◦) (t)∆t+O
(
∆t2

)
; (15)

when α12 is constant, we recover (to second order) the commonly-used con-
stant transition probabilities for fixed step sizes ∆t; these may be regarded
as approximations to our more general model here. This linearisation may be
used in numerical implementations for small ∆t to improve performance.

In our phenotypic state space, quiescent cells can become proliferative (P) or
apoptotic (A). Non-necrotic cells become hypoxic (H) when oxygen σ drops
below a threshold value σH. Hypoxic cells can recover to their previous state or
become necrotic (N ). Cell calcification (previously denoted C in Macklin et al.
(2009a, 2010b,a)) is included in the necrotic state. See Fig. 4. We include the
subcellular scale by varying the transition parameters with the cell’s internal
state and the local microenvironment.

Cell cycle models have also been used to regulate the P → Q transition
(e.g., Abbott et al. (2006); Zhang et al. (2007)), and signalling networks have
been developed to regulate Q → {P ,A,M} (where M is motile) transitions.
These can be directly integrated into the agent framework by modifying the
stochastic parameters or by outright replacing the exponential random vari-
ables with deterministic processes. Excellent examples of agent-based mod-
elling with subcellular signalling components include Chen et al. (2009b,a);
Kharait et al. (2007); Wang et al. (2007); Zhang et al. (2007, 2009).
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Fig. 4. Phenotypic transition network in the agent-based model, including quiescent
(Q), proliferative (P), apoptotic (A), hypoxic (H), and necrotic (N ) cells. An earlier
version of this figure appeared in advance in Macklin et al. (2010b).

2.5.1 Proliferation (P):

As suggested by experimental and theoretical work (e.g., Smith and Martin
(1973)), quiescent cells enter the proliferative state (i.e., progress from G0 to
S) with a probability that depends upon the microenvironment. We model
the probability of a quiescent cell entering the proliferative state in the time
interval (t, t+∆t] via an exponentially-distributed random variable:

Pr (S(t+∆t) = P|S(t) = Q) = 1− exp

(
−
∫ t+∆t

t
αP(S, •, ◦)(s) ds

)
≈ 1− exp(−αP(S, •, ◦)(t)∆t) , (16)

where the approximations best hold for small αP∆t.

Assuming a correlation between the microenvironmental oxygen level σ (non-
dimensionalised by the far-field oxygen level in non-diseased, normoxic tissue)
and proliferation (see the supplementary material and the excellent exposition
in Silva and Gatenby (2010)), we expect αP to increase with σ. Hence:

αP(S, σ, •, ◦)(t) = αP(•, ◦)
(
σ − σH
1− σH

)
, (17)

where σH is a threshold oxygen value at which cells become hypoxic, and
αP(•, ◦) is the cell’s Q → P transition rate when σ = 1 (i.e., in normoxic
tissue), which depends upon the cell’s genetic profile and proteomic state (•)
and the local microenvironment (◦). In tumours, low oxygenation is the norm
(Gatenby et al., 2007; Smallbone et al., 2007), and so σ is far below 1; typically,
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σH ∼ 0.2 and σ < 0.4 in the lumen; see the supplementary material.

For simplicity, we model αP as constant for and specific to each cell type. In
Macklin et al. (2010b), we discuss how to incorporate • (i.e., a cell’s internal
protein expression) and ◦ (as sampled by a cell’s surface receptors) into αP

through a subcellular molecular signalling model. Note that models have been
developed to reduce the proliferation rate in response to mechanical stresses
(e.g., Shraiman (2005)); in the context of the model, a cell samples these
stresses from continuum-scale variables (i.e., “◦”) to reduce αP.

Once a cell has entered the proliferative state P , it remains in that state until
dividing into two identical daughter cells of half volume, which themselves
remain in P until “maturing” into full-sized cells at the end of G1. Thereafter,
the daughter cells are placed in the “default” quiescent state Q to simulate
the transition from G1 to G0. We now describe these events in greater detail.

Define τ to the elapsed time since the cell entered the cell cycle from Q.
Similarly to Ramis-Conde et al. (2008b), we divide the cell cycle (with duration
τP) into the S-M phases and the G1 phase (with duration τG1). While τP and
τG1 may generally depend upon the microenvironment and the cell’s internal
state, we currently model them as fixed for any given cell type.

Fig. 5. P sub-model: A cell enters P from the quiescent state Q, modelling the
G0 to S transition. It then remains in P until dividing into two identical daughter
cells of half volume. The daughter cells also remain in P until completing G1 and
“maturing” into full-sized cells; thereafter, they enter the “default” state Q.

At time τ = τP − τG1 (at the end of M), we divide the cell into two identical
daughter cells with half the mass and volume of the parent cell. We assume that
both daughter cells evenly inherit the parent cell’s surface receptor expressions,
internal protein expressions, and genetic characteristics (as embodied by the
phenotypic state transition parameters). We model the cell’s volume V by

V (τ) =

V0 0 ≤ τ ≤ τP − τG1

1
2
V0
(
1 + τG1+(τ−τP)

τG1

)
τP − τG1 ≤ τ ≤ τP,

(18)
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where V0 is the cell’s “mature” volume; VN is fixed through the cycle.

Let Rparent be the radius of the parent cell (with position x0), and Rdaughter

that of the daughter cells (centered x+ and x−). Pick θ ∈ [0, 2π) with uniform
distribution. Let urand = (cos θ, sin θ), and position the daughter cells by

x± = x0 ± (Rparent −Rdaughter)urand. (19)

The daughter cells are subsequently pushed apart by cell-cell repulsive forces.

2.5.2 Apoptosis (A):

Apoptotic cells undergo “programmed” cell death in response to signalling
events. We model entry into A as exponentially-distributed with parameter
αA(S, •, ◦)(t). We assume no correlation between apoptosis and oxygen:

Pr (S(t+∆t) = A|S(t) = Q)= 1− exp

(
−
∫ t+∆t

t
αA(S, •, ◦)(s) ds

)
, (20)

where
αA(S, •, ◦)(t) = αA(•, ◦), (21)

and where ◦ does not include oxygen σ, but may include other microenvi-
ronmental stimuli such as proximity of the BM (anoikis), chemotherapy, or
continuum-scale mechanical stresses that increase αA as in Shraiman (2005).
Cells remain in the apoptotic state for a fixed amount of time τA; afterward
they are removed from the simulation to model phagocytosis of apoptotic
bodies. Their previously-occupied volume is made available to the surround-
ing cells to model the release of the cells’ water content after lysis.

2.5.3 Hypoxia (H):

Cells enter the hypoxic state at any time that σ < σH. In this paper, we use
the simplification that hypoxic cells cannot recover to their previous state,
and instead immediately become necrotic (βH → ∞ in Fig. 4). See Macklin
et al. (2010b) and the supplementary material for a more generalised form.

2.5.4 Necrosis (including calcification) (N ):

For any cell in the N state, its surface receptors (particularly E-cadherins
and integrins) and subcellular structures degrade, it loses its liquid volume,
and calcium is deposited (primarily) in its solid fraction. Let τ denote the
elapsed time spent in the necrotic state. Define τNL to be the length of time
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for the cell to swell, lyse, and lose its water content, τNS the time for all surface
receptors to become functionally inactive, and τC, the time for calcification to
occur. We assume that τNL < τNS < τC. In Macklin et al. (2009a) we found
that a simplified model (where τNL = τNS = τC) could not reproduce certain
morphological aspects of the viable rim-necrotic core interface in breast cancer.

We assume a constant rate of calcification, reaching a radiologically-detectable
level at τ = τC. If C is the nondimensional degree of calcification (scaled by
the detection threshold), then C(τ) = τ/τC for 0 ≤ τ ≤ τC, and C(τ) = 1
otherwise. We model the degradation of any surface receptor S (scaled by
the non-necrotic expression level) by exponential decay with rate constant
log 100/τNS, so that S(τNS) = 0.01 S(0). We set S(τ) = 0 for τ > τNS.

To model the necrotic cell’s volume change, let fNS be the maximum percent-
age increase in the cell’s volume (just prior to lysis), and let V0 be the cell’s
volume at the onset of necrosis. Then we model:

V (τ) =

V0
(
1 + fNS

τ
τNL

)
if 0 ≤ τ < τNL

VN if τNL < τ.
(22)

To model uncertainty in the cell morphology during lysis, we randomly perturb
its location x such that its new radius R(τNL) is contained within its swelled

radius R(0) (1 + fNS)
1
3 .

2.6 Dynamic coupling with the microenvironment with upscaling

We integrate the agent model with the microenvironment by introducing field
variables for key microenvironmental components (oxygen, growth factors,
ECM, etc.) that are governed by continuum equations. These variables affect
the cell agents’ behaviour as already described; simultaneously, the agents
impact the evolution of the continuum variables, as we demonstrate for oxygen
transport. At the macroscopic scale, oxygen transport is modelled by

∂σ/∂t = ∇ · (D∇σ)− λσ, (23)

where σ is oxygen, D is its diffusion constant, and λ is the (spatiotemporally
variable) uptake/decay rate. Suppose that viable (non-necrotic, non-calcified)
tumour cells uptake oxygen at a rate λt, host cells at a rate λh, and elsewhere
oxygen “decays” (by reacting with the molecular landscape) at a low back-
ground rate λb. Suppose that in a small neighbourhood B of x, tumour cells,
host cells, and stroma (non-cells) respectively occupy fractions ft, fh, and fb
of B, where ft + fh + fb = 1. Then λ(x) is given by

λ(x) ≈ ftλt + fhλh + fbλb, (24)
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i.e., by averaging the uptake rates with weighting according to the tissue
composition near x. This is consistent with the uptake rate model by Hoehme
and Drasdo (2010), which they based upon the experimental literature.

In numerical implementations, we construct λ at a scale that resolves the
cells (mesh size: 1 µm) and upscale it to the computational mesh (mesh size:
0.1L = 10 µm). (See the supplementary material.) Thus, the uptake rate
varies with the tumour microstructure, which, in turn, evolves according to
substrate availability. We set σ = σB (for constant σB) where d ≤ 0 model the
release of oxygen by a pre-existent vasculature in the stroma. We use Neumann
boundary conditions where the lumen intersects the computational boundary.

3 Model application to Ductal Carcinoma in Situ (DCIS)

To model solid-type DCIS, tumour cells are non-polarised (with uniformly-
distributed adhesion receptors) and are assumed to ignore E-cadherin sig-
nalling for contact inhibition. Tumour cells in the viable rim can be quiescent
(Q), apoptotic (A), or proliferative (P). In hypoxic regions (σ < σH), cells
immediately become necrotic (N ), and eventually become calcified. We as-
sume that there is no ECM in the duct lumen (E ≡ 0). Cells adhere to cells
by E-cadherins, and cell-BM adhesion is between integrins and uniformly-
distributed ligands on the BM. For simplicity, we neglect molecular-scale sig-
nalling and membrane deformation and degradation, as well as the presence
of non-cancerous epithelial cells lining the duct.

For simulation in 2D, consider cells growing in a fluid-filled domain Ω (a
rigid-walled duct) of length ℓ and width 2Rduct. To prevent artifacts (artifi-
cial stresses and mechanical tears) that often arise in non-biological corners
in computational domains, we “cap” the left edge of the virtual duct with
a semicircle of radius Rduct. This simulates growth through a partly-filled,
densely-packed duct (thereby preventing cell flux out the left boundary), as is
the case when DCIS is clinically detected. We model oxygen transport within
the duct by Eq. 23 (for constant D), and λ is as discussed above. We set
∂σ/∂n = 0 on the righthand side of the duct.

4 Numerical methods

We implement the model using object-oriented ANSI C++, where each agent
is an instance of a Cell class. Each cell object is endowed with an instance of
a Cell State class, which contains the cell phenotypic parameters (αP , αA,
τP, etc.), volumes (VC, VN, V ), radii (RN, R), maximum interaction distance
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(RA, recorded as a multiple of R), position x, and velocity v. We discretise
microenvironmental field variables (e.g., oxygen σ) on an independent Carte-
sian mesh with uniform spacing ∆x = ∆y = 0.1L, where L is the oxygen
diffusion length scale. We represent the BM morphology with a level set func-
tion, and we use an auxiliary data structure to reduce the computational cost
of cell-cell interaction testing and evaluation. The overall computational cost
of the algorithm scales linearly in the number of cells (per computational time
step). See the supplementary material for full computational details.

5 Patient-independent parameter estimation

We estimated patient-independent parameters through an extensive search of
the theoretical and experimental biology and clinical literature. We summarise
those estimates here, which are improved beyond Macklin et al. (2009a, 2010a).
See the supplementary material for full details and references. Note that the
quantitative validation results in Section 8 serve to test the adequecy of order-
of-magnitude estimates of those parameters that cannot be directly measured.

Cell cycle time τP: 18 hours by modelling literature.

G1 time τG1:
1
2
τP = 9 hours by theoretical biology literature.

Apoptosis time τA: 8.6 hours by population dynamic analysis of immuno-
histochemical stains of terminal ductal lobular units in non-cancerous
women in the clinical literature. Estimate accounts for detection short-
comings in TUNEL assay and cleaved Caspase-3 immunohistochemistry.

Necrotic cell lysis time τNL: 6 hours by experimental literature.

Necrotic cell volume increase fNS: 1.0 by experimental literature.

Necrotic cell calcification time τC: 15 days by clinical and experimental
literature, and preliminary simulations.

Oxygen diffusion length scale L: 100 µm by modelling literature.

Tumour cell oxygen uptake rate λ: 0.1 min−1 by modelling literature and

L =
√
D/λ.

Oxygen uptake/decay rate for non-viable cells and background λb:
0.01λ by model simplification.

Hypoxic oxygen threshold σH: 0.2 by modelling literature and analysis.

Maximum adhesion interaction distance RA: 1.214 R (R is the equiva-
lent cell radius) by experimental literature on breast cell deformations.

Cell-cell repulsive force coefficient cccr: 10.0ν µm/min by comparing po-
tential functions to experimental literature on tensional forces applied to
magnetic microbeads embedded in cell cytoskeletons.
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Cell-BM repulsive force coefficient ccbr: cccr by model simplification.

Cell-cell adhesion and repulsion potential exponents ncca and nccr:
Set to 1 by model simplifications.

Cell-BM adhesion and repulsion potential exponents ncba and ncbr:
Set to ncca and nccr, respectively, by model simplification.

M, the maximum value of |∇ψ|: 1 by model simplification.

6 Patient-specific model calibration

We now present a patient-specific calibration protocol for DCIS. The technique
can be applied more generally to tumours with clearly visible viable rims; we
point out these generalisations wherever possible. The following DCIS patient
data are available (full methodological details given in Edgerton et al. (2011)):

• Average duct radius ⟨Rduct⟩ and viable rim thickness ⟨T ⟩, measured on the
IHC images. In a tumour spheroid, we would use its radius in place of Rduct.

• Average cell density ⟨ρ⟩ in the viable rim, calculated by counting nuclei and
dividing by the computed viable rim size.

• Average cell nuclear radius RN.
• Cell confluence f in the viable rim, defined to be the area fraction of the
viable region occupied by cell nuclei and cytoplasm.

• Proliferative index PI, measured by staining images for Ki-67, (a nuclear
protein marker for cell cycling), and then counting the total number of
Ki-67-positive nuclei versus the total number of nuclei in the viable rim.

• Apoptotic index AI, measured by staining for cleaved Caspase-3, an “execu-
tioner” caspase reflecting the apoptosis process. As Caspase-3 is a cytosolic
protein, we identify and count positive cells by comparing the whole cell
staining intensities, and divide the count by the total number of nuclei across
the viable rim. We multiply this “raw AI” by a correction factor (8.6/6.6)
to obtain a “corrected AI”. This accounts for early apoptotic cells that do
not stain positive for cleaved Caspase-3; see the supplementary material.

The patient-specific parameters and their physical meanings are in Table 1.

Duct and cell geometry: We match the simulated duct radius to the mean
measured duct radius ⟨Rduct⟩. We obtain the average (equivalent) cell radius
R from the mean viable rim cell density ⟨ρ⟩ and measured confluence f (where
0 ≤ f ≤ 1) by the relation:

f = ⟨ρ⟩πR2. (25)

We measure the cell nuclear radius RN in histopathology.
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Parameter Physical Meaning Value

R cell radius 9.953 µm

RN cell nuclear radius 5.295 µm

σB oxygen value on the BM 0.263717

⟨σ⟩ mean oxygen level in viable rim 0.221065

⟨αP⟩ mean Q → P transition rate 0.013705 hour−1

α−1
P

mean waiting time prior to Q → P
transition when σ = 1

115.27 min

αA Q → A transition rate 0.00127128 hour−1

s cell spacing 18.957 µm

ccca cell-cell adhesive force coefficient 0.0488836 cccr

ccba cell-BM adhesive force coefficient 10 ccca
Table 1
Patient-specific parameters for Patient 100019 for the DCIS model.

Oxygen: The mean viable rim thickness ⟨T ⟩ is an indicator of oxygenation
to determine the boundary value σB. In 2D the steady-state oxygen profile
away from the leading edge satisfies

0=

Dσ
′′ − λσ 0 < x < ⟨T ⟩

Dσ′′ − Λbλσ ⟨T ⟩ < x < ⟨Rduct⟩
(26)

with the boundary and matching conditions

σ(0) = σB, σ(⟨T ⟩) = σH, σ′(⟨Rduct⟩) = 0 (27)

D lim
x↑⟨T ⟩

σ′(x) = D lim
x↓⟨T ⟩

σ′(x). (28)

Here, x is the distance from the duct wall, and ΛB = λb/λ. After applying
all conditions except σ(0) = σB, solving Eq. 26 analytically, and evaluating at
x = 0, we obtain the boundary condition σB:

σB = σH

[
cosh

⟨T ⟩
L

+
√
Λb tanh

(
⟨Rduct⟩ − ⟨T ⟩

L/
√
Λb

)
sinh

⟨T ⟩
L

]
(29)

Similarly, the mean oxygen value across the viable rim is

⟨σ⟩ = σH
L

⟨T ⟩

[√
Λb tanh

(
⟨Rduct⟩ − ⟨T ⟩

L/
√
Λb

)(
cosh

⟨T ⟩
L

− 1

)
+ sinh

⟨T ⟩
L

]
. (30)

For tumour spheroids, we would replace ⟨Rduct⟩ with the mean tumour spheroid
radius. For fingering tumours, we would use mean “finger” radius.
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Population dynamics: By solving ODEs for PI and AI (supplementary
material) to steady state, given τP, τA, PI and AI, we obtain ⟨αP⟩ and αA via:

⟨αP⟩=
(
1

τP

(
PI + PI2

)
− 1

τA
AI · PI

)/
(1− AI− PI) (31)

αA=
(
1

τA

(
AI− AI2

)
+

1

τP
AI · PI

)/
(1− AI− PI) (32)

We calibrate the functional form for αP by combining this result with the
computed mean oxygen in the previous step and solving for αP:

⟨αP⟩ = αP

(
⟨σ⟩ − σH
1− σH

)
. (33)

Cell-cell mechanics: We first estimate the equilibrium spacing s between
cell centres. For confluent cells (f = 1) in non-hypoxic tissue, we determine s
by converting the mean density ⟨ρ⟩ to an equivalent hexagonal cell packing:

s =

√
2
/(√

3⟨ρ⟩
)
. (34)

Next, for two cells i and j, we solve for the ratio of the adhesive and repulsive
forces that enforces the cell spacing s by equilibrating the cell-cell adhesive
and repulsive forces at r = s:

EiEj
ccca
cccr

=

∣∣∣∣∣∣
∂
∂r
ψ
(
s;Ri

N +Rj
N, R

i +Rj,M, nccr

)
∂
∂r
φ
(
s;Ri

A +Rj
A, ncca

)
∣∣∣∣∣∣ =

(
1− s

Ri+Rj

)nccr+1

(
1− s

Ri
A+Rj

A

)ncca+1 . (35)

If i and j are of the same cell type with identical radii and interaction adhesion
distances, and if we set E = 1 for both cells, then this simplifies to

ccca
cccr

=
(
1− s

2R

)nccr+1
/(

1− s

2RA

)ncca+1

(36)

This leaves a free parameter: in effect, ⟨ρ⟩ determines the equilibrium spacing
but does not stipulate the time scale at which the forces operate to maintain
the density. We apply our estimate of cccr (supplementary material) to fully
constrain the cell-cell mechanics. It may also be possible to constrain the me-
chanics by matching the simulation to the variance in ρ. Lastly, we can apply
this technique in multiple tissue types and regions if the cell-cell mechanics
were expected to vary (e.g., decreased cell-cell adhesion in hypoxic regions).
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Quantity Measurement (Mean ± std. dev.) Units

Duct Radius Rduct 170.11 ± 76.37 µm

Viable Rim thickness T 76.92 ± 12.51 µm

PI 17.43 ± 9.25 %

raw AI 0.638 ± 0.424 %

corrected AI 0.831 ± 0.553 %

Cell density ρ 0.003213 ± 5.95e-4 cells/µm2

Nuclear diameter 2RN 8.48 to 12.70 (typical range) µm

Table 2
Key data for anonymised case 100019 from Edgerton et al. (2011).

Cell-BM mechanics: If ccba ≤ ccca, too many cells pull away from the
BM; this is not consistent with typical patient histopathology (supplementary
material); thus, we set ccba = 10ccca. Alternatively, one might obtain ccba by
measuring the mean distance between the cell centres and the BM and then
setting |Fcba| = |Fcbr| at that distance. For simplicity, we set ccbr = cccr.

7 Sample calibration for Patient 100019

We demonstrate the calibration protocol on immunohistochemistry and histo-
pathology data obtained from archived mastectomy tissue from an anonymised
DCIS patient at the M.D. Anderson Cancer Center (anonymised case number
100019) from Edgerton et al. (2011). (Preliminary data may deviate from the
final published values.) The patient had nuclear grade III (high-grade), mixed
cribriform/solid-type DCIS with comedonecrosis; the patient measurements
for this case (see below) are typical for mixed-type and solid-type cases in
Edgerton et al. (2011). The measurement techniques for these data are detailed
in Edgerton et al. (2011). In addition to these data, we measured the size of
several nuclei in the viable rims in Fig. 6. The measurements for this case are
given in Table 2. Note that the variation in patient data is the combined effect
of measurement errors and genuine intratumoural heterogeneity.

This case had no measurements of f , so we approximate it as solid-type with
f ≈ 1. We set the patient-independent parameters as determined in Section
5. By applying the calibration protocol in Section 6 to these values and the
patient-specific data, we obtain the parameter values in Table 1.
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Fig. 6. Ki-67 immunohistochemistry of two DCIS duct cross sections in
case 100019. Nuclei of cycling cells (P: S, G2, M, and G1) stain dark red, while
nuclei of non-cycling cells (Q: G0) counterstain blue. In each duct (sampled from
various locations in the tumour to demonstrate typical features), the viable rim is
clearly visible, with greatest proliferation along the outer edge. In the duct centres,
necrotic cores are filled with partly-degraded nulcear debris (red arrows, pointing
up and right), mostly-degraded nuclei (green arrow, pointing down and left), and
possibly microcalcifications in the degraded region. Note the physical gap (black
horizontal arrows) between the viable rims and the necrotic cores. A colour version
of this figure is available in the online edition.

7.1 Verification of the Calibration

To verify the calibration, we ran a simulation using the numerical methods in
Section 4 for 30 days. We computed the simulated AI and PI, mean viable rim
thickness, and viable rim cell density at 1-hour increments for the last 15 days
of simulated time. (The full time-course evolution is examined in Section 8.)
Full post-processing source code is described in the supplementary material 8 .

In Table 3, we present the mean and standard deviation of these computations
for the last 15 days of the simulation and compare to the patient data; these
are plotted in Fig. 7 as intervals [mean− std. dev.,mean + std. dev.], for the
simulated data (left bars) and actual patient data (right bars). Because apop-
tosis is a rare stochastic event (< 1%) in a region with fewer than 500 cells,
we expect considerable variability; indeed, this is observed in the patient AI
as well. Because all the numerical targets (outlined in Table 2) are within the
range of patient variation, the calibration can be considered as successful. The
discrepancy in the PI can be eliminated by better accounting for the length
of G1 in the calibration; see the supplementary material.
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All measurements given as mean ± standard deviation

Quantity Patient Data Simulation

PI (%) 17.43 ± 9.25 24.04 ± 4.587

Corrected AI (%) 0.831 ± 0.572 0.7378 ± 0.7146

Viable rim thickness (µm) 76.92 ± 12.51 80.73 ± 1.10

Cell density (cells/µm2) 0.003213 ± 5.95e-4 0.002950 ± 6.09e-5

Table 3
Verification of the patient-specific calibration: Comparison of the patient
(second column) and computed (third column) mean and standard deviation for
the proliferative index, apoptotic index, viable rim thickness, and cell densities. All
computed quantities are within the range of patient variation.

Simulated statistics (left bars) vs. patient data (right bars)
(All bars are mean ± standard deviation)
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Fig. 7. Verification of the patient-specific calibration: We compare the sim-
ulated (left bars) and patient (right bars) PI (column one), AI (column two), cell
density (column three), and viable rim thickness (column four) over the last 15 days
of our simulation. Notice that the bars overlap for each datum, and the simulated
mean (left triangles) are within the patient variation for each datum. Hence, the
calibrated model matches the calibration data within tolerances.

8 Patient-calibrated DCIS simulation: Hypothesis testing and model
validation by clinical data

We now simulate DCIS in patient 100019 using the patient-independent pa-
rameters in Section 5; the patient-specific parameters are as in Section 6. The
dynamic simulation is presented in Fig. 8. In this and all subsequent figures,
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small dark circles are cell nuclei, pale blue cells are quiescent (Q), green cells
are cycling (P), red cells are apoptosing (A), dark grey cells are necrotic but
not yet lysed (N ), and the dark circles in the duct centres are necrotic cellular
debris. The shade of red indicates the degree of calcification; bright red circles
are clinically-detectable microcalcifications (N with τ > τC). An animation of
this simulation is available as Video S1 in the supplementary material.

8.1 Overall spatiotemporal dynamics

In the simulation, a small initial population begins proliferating into the duct
(0 days). As the tumour grows along the duct, oxygen uptake by the cells
leads to the formation of an oxygen gradient (not shown). At 6.17 days, the
oxygen level drops below σH in the centre of the duct near the leading edge of
the tumour, causing the first instance of necrosis; this cell lyses at 6.42 days.
By 7 to 14 days, a viable rim of nearly uniform thickness (approximately 80
µm) can be observed, demonstrating the overall oxygen gradient decreasing
from σB at the duct boundary to σH at the edge of the necrotic core.

Consistent with the assumed functional form of the Q → P transition, prolif-
erating cells are most abundant near the duct wall where the oxygen level is
highest, with virtually no proliferation at the perinecrotic boundary. Because
oxygen can diffuse into the tumour from the duct lumen, viable cells are also
observed along the tumour’s leading edge near the centre of the duct. Apopto-
sis occurs with approximately uniform distribution throughout the duct. See
7 days and onward in Fig. 8. These spatiotemporal dynamics emerge by 7 to
14 days and remain throughout the simulation. This is consistent with our
analysis of the cell state dynamics in the supplementary material.

The first clinically-detectable microcalcification appears at 21.17 days. By 22
days, a new characteristic length emerges: the trailing edge of the microcal-
cification maintains a distance of approximately 180 µm from the end of the
duct. (See 28 days in Fig. 8 and Video S1 in the supplementary material.)
Several features combine to cause this. We do not model contact inhibition,
and so cells at the end of the duct continue to proliferate and push cells to-
wards the tumour’s leading edge. Because the end of the duct has reached
a local dynamic equilibrium by this time, a steady flux of tumour cells into
the necrotic region has emerged. Because the calcification time (τC) is fixed,
the cells are pushed a fixed distance along the necrotic core before lysing and
calcifying, leading to the observed “standing wave” pattern.

The necrotic core biomechanics play a key role in these dynamics. Whenever
a necrotic cell lyses, its former volume is converted to a small core of cellular
debris and a large pocket of (released) fluid, which is easily occupied by other
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Fig. 8. Agent-based simulation of DCIS in a 1 mm length of duct.
Legend: The black curve denotes the basement membrane. Cell nuclei are the small
dark blue circles, quiescent cells (Q) are pale blue, proliferating cells (P) are green,
apoptosing cells (A) are red, and necrotic cells (N ) are grey until they lyse, after
which their solid fraction remains as debris (dark circles in centre of duct). The shade
of red in the necrotic debris indicates the level of calcification; bright red debris are
clinically-detectable microcalcifications (N with τ > τC). Simulated times (from
top to bottom): 0, 7, 14, 21, and 28 days. Bar: 100 µm. A colour version of this
figure is available in the online edition.

cells. Thus, necrotic cell lysis acts as a mechanical stress relief, analogously to
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the mechanical pressure sink terms used in the necrotic core in Macklin and
Lowengrub (2005, 2006, 2007, 2008). A pattern of cell flux emerges, where
proliferating cells on the outer edge of the duct push interior cells towards
the necrotic core, diverting much of the overall cell flux inwards rather than
towards the tumour leading edge. See Video S1 in the supplementary material.
This is a characteristic emergent feature of our model, and it has important
implications for the rate of tumour advance. See Section 8.2.

A notable feature is the physical tear or gap between the tumour’s viable rim
and the necrotic core. (See 14 days and onward in Fig. 8.) This phenomenon
is observed in stained tissue slides. See Fig. 6 and Section 8.4. It has been
attributed to dehydration, but it was unclear whether the dehydration is an
artifact due to tissue processing or a natural part of necrosis. The emergence
of this phenomenon in a mechanistic model supports the hypothesis that the
observed separation, while perhaps exacerbated during specimen preparation,
is a bona fide result of DCIS tissue biomechanics. We note that an earlier
version of our model–where necrotic cells gradually lost volume, rather than
abruptly lysing–did not predict large gaps (Macklin et al., 2009a, 2010b). Fast
cell swelling (over the course of τNL = 6 hours) and subsequent bursting act as
a perturbation of the perinecrotic tumour boundary. This is consistent with
our earlier hypothesis that the physical gap must be due in part to necrotic
cell volume loss over a fast time scale (Macklin et al., 2009a).

8.2 Constant rate of tumour advance – confirmation with clinical data

To quantify and understand the tumour’s growth, we post-processed our data
to obtain the time evolution of the maximum position (extent) of viable tu-
mour cells along the duct (xV(t)) and the maximum position of the calcifica-
tion (xC(t)). To obtain better statistics on the growth dynamics, we extended
our virtual duct to 1.5 mm, and continued the simulation to 45 days. C++
post-processing source code and pre-compiled binaries are provided in the
supplementary material to compute these and other statistics.

In Fig. 9, we plot xV (top curve) and xC (bottom curve) for the first 45 days
of growth. For the first 10 to 11 days, the simulation exhibits transient dy-
namics due to the left computational boundary. After this time, the tumour
has developed a sufficiently large region between the left boundary and the
leading edge for the dynamics to begin reaching a steady state as discussed
above. See 11 days in Fig. 10. From 11 to 45 days, xV increases linearly at
27.97 µm/day (obtained by least-squares linear fitting); see the lighter line in
Fig. 9. The constant rate of tumour advance is due to the combined effects
of substrate transport limitations and necrotic cell lysis in the duct interior.
Because lysis acts as a mechanical stress relief, a significant portion of the pro-
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Fig. 9. Tumour and microcalcification positions in the duct: The top curve
plots the maximum position of viable tumour tissue; the bottom curve plots the
maximum calcification position. The lighter line is the least-squares fit of the tumour
advance from 11 to 45 days.

liferative cell flux is directed towards the duct interior, rather than towards
the leading edge. Hence, the only forward-directed flux occurs along the lead-
ing tumour edge. In additional simulations, we found that setting τNL = 15
days results in convex, exponential-like growth curves (supplementary mate-
rial). This further supports the vital role of necrotic cell lysis in linear DCIS
growth. Interestingly, recent modelling by Astanin and Preziosi (2009) with
inverted geometry–a blood vessel surrounded by a growing tumour cord–also
predicted linear tumour advance along the nutrient source.

Linear growth is consistent with mammographic measurements; Carlson et al.
(1999) analysed the relationship between the maximum DCIS diameter and
the elapsed time between mammograms, finding a near-linear relationship
between the elapsed time between mammograms and the median DCIS size.

The rate of tumour advance in the duct–27.97 µm/day, or 10.2 mm per year–is
consistent with DCIS growth estimates obtained by analysis of mammograms.
Thomson et al. (2001) analysed changes in microcalcifications in mammograms
to determine that high-grade DCIS tends to grow at about 7.1 mm per year
(along an axis to the nipple). The group also analysed the data published by
Carlson et al. (1999) and determined 13 mm/year and 6.8 mm/year mean and
median growth rates, respectively. Simulating with τG1 = 1 min (for a better
fit to the patient ⟨PI⟩–see the discussion in the supplementary material) yields
a rate of tumour advance of 7.86 mm/year (result not shown). It is encouraging
that a mechanistic cell-scale model–with calibration solely by molecular- and
cell-scale data–can accurately predict emergent, macroscopic behaviour.
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Fig. 10. Additional timepoints for the baseline simulation: From top to bot-
tom, 11, 24, and 45 days. Cells are coloured as in Fig. 8. Bar: 100 µm. A colour
version of this figure is available in the online edition.

8.2.1 Inverse relationship between duct radius and rate of tumour advance

The link between necrotic cell lysis and linear DCIS growth suggests that
the rate of tumour advance is inversely correlated with the duct radius–larger
ducts have a greater “reservoir” of lumen available for mechanical stress relief,
thereby directing more cell flux into the lumen. Smaller ducts should exhaust
this mechanism more quickly, leading to a faster overall advance.

To test this, we simulated DCIS with the same phenotypic parameters as
our main simulation, in virtual ducts with Rduct ∈ {100, 125, 150, 170.11}. To
eliminate the effect of differing oxygenation, we set the boundary condition
σB to maintain ⟨σ⟩ (and hence ⟨PI⟩) constant in each simulation, as given in
Eq. 29. All simulations had ⟨PI⟩ between 22 and 24%, and mean viable rim
thicknesses between 80 and 81 µm (result not shown).

For the duct of radius 100 µm, cells reach the edge of the computational
domain at 1 mm after just 20.58 days, with a mean rate of advance (from
10 to 20 days) of 53.65 µm/day. For the duct of radius 125 µm, cells reach 1
mm by 27 days, and advance 37.75 µm/day (from 10 to 27 days). For the 150
µm duct, the tumour advanced 29.80 µm/day (from 10 to 30 days). In our
baseline case with radius 170.11 µm, cells advance at 25.87 µm/day from 10
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Fig. 11. Inverse correlation of the duct radius and rate of tumour advance:
For small ducts, little lumen is available for mechanical relaxation, leading to rapid
tumour advance. Conversely, growth is slower for larger ducts, with a threshold
minimum rate of advance (approximately 20.52 µm/day). The mean proliferative
and apoptotic indices were fixed for all simulations.

to 30 days. See Fig. 11; these data suggest a relationship of the form

x′V = a+ eb−cRduct (37)

for positive constants a, b, and c. To estimate these, we chose a that min-
imises

∣∣∣∣∣∣x′V −
(
a+ e−pa(Rduct)

)∣∣∣∣∣∣
2
on {100, 125, 150, 170.11}, where pa (Rduct) is

the linear least-squares fit to ln (x′V − a). By this procedure, we estimate:

x′V ≈ 20.52 + e6.085−0.02584Rduct µm/day. (38)

See the red fitted curve in Fig. 11. Notice that as Rduct ↑ ∞, the rate of tumour
advance (for fixed oxygenation and cell phenotypic parameters) saturates at a
nonzero minimum (estimated here at approximately 20.52 µm/day, or 7.5 mm
per year). This has important implications for clinical planning, as it provides
a range as well as a lower bound for the rate of growth of DCIS.

8.3 Calcification size and tumour size are linearly correlated – confirmation
with clinical data

Prior to breast-conserving surgery, surgeons use mammographic images of mi-
crocalcifications to plan the correct surgical volume; for impalpable lesions,
the planning is guided by stereotactically-placed localisation wires. Patholo-
gists evaluate the success of the resection by examining the surgical resection
margin: the outer edge of the excised specimen. The definition of an ade-
quate margin width for DCIS (the distance from the tumour boundary to the
surgical margin) varies by guideline. Smaller margin widths typically corre-
late with a greater risk of local recurrence (Boland et al., 2003; Macdonald
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et al., 2006). However, the goal of breast-conserving surgery is to minimise the
amount of normal tissue that is excised while fully eliminating the DCIS. Sev-
eral studies have addressed these competing goals to determine an adequate
post-operative radiation field based on margin width and other tumour char-
acteristics (e.g. Vicini et al. (2004)). However, there has been little attention
given to improving the pre-operative estimate of the optimal surgical volume.

To investigate this, we define a “mammographic image error” e(t) = xV − xC
to be the distance between the edge of the viable tumour (xV) and the edge
of a radiographically detectable calcification (xC). If the desired margin width
per institutional surgical protocols is added to e(t), then the distance from
visible DCIS-associated microcalcifications to the desired surgical margin can
be estimated from a mammographic image. (This requires that the microcal-
cifications are confirmed to arise from DCIS and are not benign.)

We found that from 21.17 days (the time of the first microcalcification) to 45
days, e(t) grows at a slow, roughly linear rate. When attempting to fit e(t) to
the form e∞− ea−rt (for e∞, a, r > 0), we found no evidence that e reaches e∞
in time scales under four years (results not shown). We conclude that xV and
xC are linearly correlated over clinically-relevant time scales. See Fig. 12: left.
This relationship is confirmed in the clinical literature. de Roos et al. (2004)
compared the maximum calcification diameter in mammograms (corresponds
to xC) with the measured pathologic tumour size (corresponds to xV) in 87
patients, finding a significant linear correlation between these measurements.

To predict the quantitative relationship between the mammographic and patho-
logic tumour sizes, we compute the linear least-squares fit between xV and xC:

xV ≈ 0.4203 + 1.117xC mm. (39)

We plot this against our simulated DCIS data (blue points) and the data (red
squares) from de Roos et al. (2004) in Fig. 12: right. Our model not only cor-
rectly predicts a linear correlation between a DCIS tumour’s mammographic
and pathologic sizes, but also demonstrates an excellent agreement with pub-
lished clinical data two orders of magnitude larger than our simulation data.

de Roos et al. (2004) obtained a different linear fit (xV = 0.55+0.86xCmm) via
linear regression analysis; the discrepancy is largely due to the greater number
of outliers in the clinical data: 7 of 87 cases had mammography-pathology
discrepancies exceeding 2 cm. While we cannot extract all 87 data points from
the published figure in de Roos et al. (2004) (25 points overlap), extracting the
62 non-overlapping points and excluding the 7 outliers yields a least-squares
fit (xV = 0.320 + 0.934xC mm) that better matches our prediction. Including
the overlapping data points would likely further improve the match.
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Fig. 12. Comparison of mammographic and pathologic DCIS sizes: Left:
Our DCIS simulation predicts a linear correlation between the mammographic cal-
cification size (xC) and the actual pathology-measured tumour size (xV). Right: A
linear least-squares fit of our simulation data (blue circles) fits clinical data (red
squares) from de Roos et al. (2004), further demonstrating our model’s predictivity.

Fig. 13. Selected DCIS cross-sections at 45 days. a: Close to the leading edge,
very little necrotic debris is visible, although the viable rim thickness is comparable
to other cross sections. b: Farther from the leading edge, a band of intact necrotic
debris surrounds a hollow duct lumen. c: As the distance increases, the lumen is filled
with necrotic debris. Nuclei on the outer edge is newer and less degraded; material in
the centre is more degraded. d: Farther still, a band of degraded nuclei surrounds a
calcified core. e: With increasing distance, the microcalcification occupies a greater
portion of the necrotic core. Bar: 100 µm. Cells are coloured as in Fig. 8. A colour
version of this figure is available in the online edition.

8.4 Predicted necrotic core microstructure – comparison with histopathology

The microstructure of the simulated necrotic core affords us further oppor-
tunity to generate hypotheses on DCIS, which can be tested by comparison
against histopathology. In Fig. 13, we highlight several typical DCIS cross
sections in our simulation at time 45 days.

In Slice a, there is a viable rim of thickness comparable to the remainder
of the tumour, but with little visible evidence of necrosis. This suggests that
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in cases where too few ducts are sampled, a pathologist may fail to observe
comedonecrosis, potentially changing the patient’s Van Nuys Prognostic Index
score (Silverstein et al., 1996) and treatment, whereas the biological mecha-
nisms (particularly hypoxia) are the same as those with necrosis. This would
be particularly true in cases where ⟨PI⟩/τP ≈ ⟨AI⟩/τA, as little net cell flux
from the viable rim to the necrotic core would be expected.

Farther from the tumour leading edge in Slice b, we see a ring of necrotic
debris, surrounding a hollow duct lumen. In cross sections like this, there has
not yet been sufficient tumour cell flux from the viable rim to completely fill
the lumen with necrotic debris. Farther still from the leading edge in Slice
c, there has been sufficient cell flux to fill the lumen with necrotic material;
we also see an outermost band of intact necrotic nuclei, encircling a central
region of mostly degraded nuclei (modelled here simply as partly calcified).
Ducts like these are observed in our patient’s H&E stains (Duct 1 in Fig. 14).

Farther from the leading edge in Slice d, a thin outermost band of relatively
intact necrotic nuclei surrounds an inner band of mostly degraded necrotic
material and an inner core of microcalcification. Similar cross sections are
seen in our patient (Duct 1 in Fig. 14; left duct in Fig. 6). In Slice e, the
microcalcification is larger, and the outermost band of intact necrotic nuclei
is largely gone; see Ducts 2 and 3 in Fig. 14. The necrotic core is increasingly
calcified with distance from the tumour leading edge.

The model predicts an age-ordered necrotic core microstructure, with oldest
material in the centre surrounded by increasingly newer, less-degraded, and
less-calcified material. This ordering—which arises due to the overall flux of
cells from the viable rim into the necrotic core—suggests that there is an addi-
tional necrosis time scale, separating the rates of necrotic nuclear degradation
and calcification. As an initial estimate, we might surmise that nuclear degra-
dation occurs on the time scale comparable to our current estimate of τC, and
calcification may be somewhat slower than our initial estimate.

9 Discussion and ongoing work

In this work, we developed and analysed an agent-based model of ductal carci-
noma in situ (DCIS) of the breast. Our model refines and makes more explicit
the biological underpinnings of current agent-based cell models, particularly
for finite cell-cell interaction distances, the need for partial cell overlap to ac-
count for uncertainty in cell positions and morphology, and a rigorous way to
vary phenotypic transition probabilities with the time step size, the cell’s in-
ternal state, and the microenvironment. We provide the most detailed necrosis
model to date–including the impact of volume changes over time scales ranging
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Fig. 14. H&E staining of DCIS in several ducts in case 100019. In each labelled
duct, a readily visible outer viable rim (with faintly haematoxylin-stained nuclei)
is separated from the necrotic core by a physical gap (black horizontal arrows).
Duct 1 necrotic core: An outer band of partly degraded nuclei (red arrow, pointing
up and right) surrounds a region of partly- or mostly-degraded nuclei (green arrow,
pointing down and left). Duct 2 necrotic core: A region of mostly-degraded nuclei
(green arrow, pointing down and left) surrounds a microcalcification (white vertical
arrow). Duct 3 necrotic core: An outer band of partly degraded nuclei (red arrows,
pointing up and right) surrounds a region of partly- or mostly-degraded nuclei (green
arrows, pointing down and left), with a central core of microcalcifications (vertical
white arrows). This duct is likely the intersection of two or more ducts near a branch
point. A colour version of this figure is available in the online edition.

from hours to weeks. We are the first to model necrotic cell calcification.

We developed the first patient-specific model calibration protocol to use pathol-
ogy measurements from a single time point to simulate cancer in individual
patients–an advance that could improve patient-tailored surgical and thera-
peutic planning. The calibration technique is broadly applicable to current
agent-based models for multiple cancer types. Our model made numerous
quantitative predictions on DCIS that we tested against clinical data. The
simulated DCIS grows at a constant rate of approximately 1 cm per year (7.5
to 10.2 mm per year). These findings are quantitatively consistent with the
clinical literature. The predicted difference between the mammographic and
pathological tumour size increases slowly with time. Our model generates a
linear correlation between the mammographic and pathological tumour sizes
that quantitatively fits clinical data spanning several orders of magnitude.
Observing such an excellent agreement over a broad range of scales suggests
that the model mechanics are biologically sound, and that our parameter es-
timates (including order-of-magnitude estimates) are sufficiently accurate to
allow quantitative biological and clinical investigations.
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The model also correctly predicts the DCIS microstructure: a proliferative rim
(with greatest proliferation on its outer edge) surrounds a stratified necrotic
core. The viable rim and necrotic core are mechanically separated by a small
gap–a feature that emerges from the mechanics of necrotic cell swelling and
fast lysis, rather than being wholly attributable to tissue processing artifacts.
The necrotic core has a layered structure that closely correlates with the “age”
of the material. Relatively intact necrotic nuclei are observed in the outermost
regions where cells have recently lysed. Closer to the duct centre, these nuclei
start to disappear, and microcalcifications are found in the innermost region.
These features are all observed in patient images, as illustrated in Fig. 14.

Biological insight: Because the standard deviations of the patient data are
not used for calibration, we can use the simulated variation to test the model’s
underlying biological hypotheses. Because the simulated variation in PI is
significantly lower than the actual variation (Fig. 7), the heterogeneity in DCIS
proliferation is likely due to signalling variations (e.g., contact inhibition),
rather than oxygenation gradients alone. On the other hand, the simulated
and actual standard deviations in AI are quite similar (Fig. 7), supporting
our biological hypothesis that apoptosis occurs at a low “background” rate
that is is independent of oxygenation and any other signalling. The patient’s
mean and standard deviation are of comparable magnitude, consistent with
the exponentially-distributed random variables used in our model.

Necrotic core biomechanics drive DCIS development. The constant rate of tu-
mour advance is due to the combined effects of substrate transport limitations
and the mechanical stress relief provided by cell lysis in the necrotic centre.
Remarkably, we recover a quantitatively reasonable growth rate without mod-
elling contact inhibition. Galle et al. (2005) used a rigorously-calibrated agent
model to assess the impact of contact inhibition and growth substrate trans-
port limitations on 2-D and 3-D cell cultures, finding that contact inhibition
alone was responsible for growth limitations in 2D, but substrate transport
limitations are significant in 3D. They found that cell-cell contact inhibition is
further reduced when cells lose contact with the BM. This is consistent with
cells growing in a lumen, as in DCIS. More recently, Galle et al. (2009) further
validated their agent model by comparing its predictions to a well-calibrated
multiphase (continuum) model, with excellent model agreement in predicting
2-D in vitro Widr cell colony growth as a function of contact inhibition (where
oxygen transport limitations do not apply). Their results–also consistent with
continuum models such as Chaplain et al. (2006) that include ECM-MMP
dynamics that are typical of DCIS microinvasions–show the importance in-
cluding contact inhibition signalling in future model refinements. Indeed, we
found that proliferation varies with density, suggesting that contact inhibition
shapes the finer details of DCIS progression (Macklin et al., 2010a).

36



The gap between the viable rim and the necrotic core is due to the relatively
fast time scale of necrotic cell lysis. Analysis of the morphology and size of
this gap may give insight on the progression of necrotic cell swelling and lysis,
as well as the relative adhesive properties of lysed necrotic cells. The stratified
necrotic core structure emerges due to the net outflux of cells from the viable
rim into the necrotic core, resulting in an age structuring, and the relatively
slow time scale of cell calcification. The relative distribution of these structures
within the necrotic core may shed further insight as to the relative magnitudes
of the time scales of pyknosis (nuclear degradation), water loss following lysis,
and calcification. Indeed, the existence of a layer where the nuclei are mostly
degraded with little evidence of calcification suggests that the time scale of
pyknosis is between that of lysis (hours) and calcification (weeks).

Interestingly, the model predicts a linear/casting-type calcification, where the
calcification forms a long “plug” that fills the duct centre. Other calcification
morphologies (e.g., fine pleomorphic) are not predicted by the biophysical as-
sumptions of our model. While casting-type calcifications correlate with come-
donecrosis (Stomper et al., 1989), they are only present in approximately 30%-
50% of DCIS (Evans et al., 2010; Hofvind et al., 2011). Furthermore, casting-
type calcifications can be absent from small, high-grade DCIS, while present
in larger, low-grade DCIS (Evans et al., 2010). Thus, additional biophysics
(e.g., secretions, heterogeneous adhesive properties, and degradation of the
calcifications over very long time scales) are required to model the broader
spectrum of observed calcifications in DCIS. Our H&E images support the
notion of long-time degradation. The centres of many calcifications–which we
have shown are the “oldest” necrotic material–demonstrate significant cracks
that suggest extensive degradation and weak cohesion. See Fig. 14.

Phospholipids—such as those from subcellular structures that likely form a
“backbone” for the formation of microcalcifications—degrade with half-lives
on the order of 80 (Ayre and Hulbert, 1996) to 300 hours (Krause and Beamer,
1974) in non-pathologic tissue. If the degradation is two-to-ten times slower
in necrotic tissue, we would expect degradation to progress over the course
of a few months. This may partly explain rare cases of spontaneous resolu-
tion of calcifications in mammograms, where calcifications become smaller or
occult without alternative explanations (e.g., invasive foci) (Seymour et al.,
1999): in slow-growing DCIS (e.g., with both high PI and AI, as is observed in
high-grade DCIS (Buerger et al., 2000)), calcifications may be degraded more
quickly than they are replaced by new necrotic material.

Clinical insights: The growing difference between mammographic and pa-
thologic sizes likely prevents using a single fixed “safe” surgical margin for
all affected tumour ducts for all times. Instead, the margin size should vary
with the tumour pathological properties, the duct size, oxygenation, and time.
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Given proper calibration to accurate measurements of a patient’s proliferative
and apoptotic indices, cell density, duct sizes, and other histopathologic and
radiologic data, it should be possible to create a patient-specific map between
the microcalcification geometry and the actual tumour shape and size. This
could allow surgeons to use modelling based on data from the diagnostic core
biopsy to more precisely plan DCIS surgical margins while removing less non-
cancerous tissue, and could improve targeting of intra- and post-operative ra-
diotherapy. Our calibration protocol can be combined with upscaling methods
to calibrate multiscale models. As a proof of concept, we applied this approach
to histopathology data from 17 patients to calibrate a simplified continuum
model of DCIS, with the goal of predicting surgical excision volumes in indi-
vidual patients (Edgerton et al., 2011). Although the continuum model used
a steady state simplification and neglected necrosis, the predicted volumes
were consistent with patient mammographic measurements in 14 of 17 cases.
Hence, there is great promise in using our agent model and patient-specific
calibration to incorporate patient pathology data into multiscale models.

The model predicts a general trend for the cross-sectional structure of a DCIS
tumour. Moving from the basement membrane towards the duct centre, we
see the following layers: a viable rim with greatest proliferation towards the
basement membrane, a gap between the viable rim and necrotic core, an
outer band of the necrotic core with relatively intact necrotic nuclei, an inner
necrotic band of relatively degraded nuclei, and a central core of microcal-
cification. Cross sections closer to the leading edge contain fewer of these
elements. We hypothesise that the microstructure of a given duct cross sec-
tion in a histopathology slide could be used to estimate its position relative
to the leading tumour edge in that duct; this could be tested by comparing
the slide’s position to any known geometric information on the patient’s tu-
mour. Moreover, if we can obtain sharper estimates of the various necrosis
time scales, then we could potentially use the model to quantitatively pre-
dict the distance from each histopathology cross section to the actual tumour
boundary, thereby further assisting surgical and therapeutic assessment.

Ongoing work: We chose DCIS as our initial modelling test bed because
it is clinically and scientifically significant in and of itself, it is tractable to
patient-specific simulation with currently-available data, and it is a necessary
step in modelling progression to invasive ductal carcinoma (IDC). We plan
to integrate molecular-scale models of hypoxia and invasion-related pathways
(e.g., HIF-1α and the ErbB family), BM deformation and degradation, and
motility. These additions will allow us to extend our investigations to IDC.
Given the critical role played by necrosis in determining the DCIS growth rate,
we are extending our model to better account for changes in the fluid and solid
content, including pyknosis (nuclear degradation). The calcification model will
be refined to describe the formation and degradation of calcium crystals in
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phospholipids (e.g., in degraded organelles) that remain after pyknosis. These
improvements will be accompanied by advances in the model calibration to
account for variations in the cell size throughout the cell cycle.

A potential weakness of this work is a lack of unicity in the data used for
parameterisation, with in vitro and in vivo data combined from human and
animal models, across multiple cell types. This may result in subtle incompat-
ibilities, such as inconsistencies in the cell microenvironments, and variations
in key biophysical processes. In effect, the assumption that cells use the same
fundamental processes with altered frequency may only hold to leading or-
der, and may affect the quantitative accuracy of our model predictions. We
are addressing this concern by conducting appropriate in vitro experiments to
measure single-cell properties in breast cell lines (in various phenotypic states),
and are reviewing the state-of-the-art in cell biomechanics experiments.

We are working to further validate the model and bring it closer to clinical
application. We are refining the calibration protocol to better recapitulate
the input PI and density data. We are conducting a patient-specific model
validation, where we obtain pathology from multiple patients, determine the
model-predicted growth rates and correlations between mammographic and
pathology sizes, and compare these to the case histories and mammograms. We
plan to leverage our early model successes to study the impact of inadequate
surgical margins on tumour regrowth and microinvasion, and the effect of
adjuvant chemo- and radiotherapy in ameliorating these phenomena.

Final thoughts: Our model is based upon physical conservation laws, with
the key molecular and cellular biology of DCIS integrated through constitutive
relations. We have taken care to not prescribe DCIS behaviour; these instead
become manifest as emergent phenomena–a trait of a scientifically sound pre-
dictive model. By carefully calibrating the model, we can use its quantitative
predictions to gain insight into the underlying mechanisms of DCIS. This is
a key advance over phenomenological and statistical models, which can make
predictions on DCIS behaviour but not on the underlying mechanisms. Fur-
thermore, because statistical models generate correlations that apply to broad
classes of patients, they cannot make quantitative predictions on DCIS in spe-
cific patients. Mechanistic models, on the other hand, have this potential.

We have demonstrated that a carefully-calibrated, mechanistic model of DCIS
can make quantitative, testable predictions at the macroscopic scale, based
solely upon microscopic, patient-specific measurements. Once validated and in-
tegrated into highly-efficient hybrid multiscale modelling frameworks (Lowen-
grub et al., 2010; Deisboeck et al., 2011; Edgerton et al., 2011), this work has
the potential to improve the precision, disease-focused, and cosmetic outcome
of patient-tailored breast-conserving surgery and radiotherapy.
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