
UNIVERSITY OF MINNESOTA

This is to certify that I have examined this copy of a master’s thesis by

Paul Thomas Macklin

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

John Lowengrub

Name of Faculty Advisor

Signature of Faculty Advisor

Date

GRADUATE SCHOOL

Numerical Simulation of Tumor Growth and

Chemotherapy

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Paul Thomas Macklin

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

September 2003

c©Paul Thomas Macklin 2003

Acknowledgements

I would like to thank the National Science Foundation, which funded this work through a Grad-

uate Research Fellowship. The Institute for Mathematics and its Applications (IMA) contributed

invaluable computer resources and support; furthermore, the IMA provided a positive, friendly

work environment that made a great difference for me. I also want to thank my advisor, John

Lowengrub, for his unsurpassed dedication to his students. Last in this list but first in my heart, I

want to thank my wife, Angela, without whose support and enthusiasm this research would never

have happened. Thanks for making this fun!

i

Abstract

We implement numerically a model for free boundary necrotic and non-necrotic tumor growth

and chemotherapy, where the tumor-healthy tissue interface is a moving deformable boundary.

In the process, we improve upon existing techniques and develop new finite difference and ghost

fluid / level set methods to attain full second-order accuracy for the first time in the context of a

fully-coupled, nonlinear moving boundary problem. Our new methods include a robust boundary

condition-capturing Poisson solver, improved discretizations of the normal vector and curvature, a

new technique for extending variables beyond the zero level set, and a new application of Gaussian

filter technology ordinarily associated with image processing. We conduct some parameter studies

on 2D necrotic and non-necrotic tumor growth with and without chemotherapy, and we conclude

with a 2D simulation of tumor breakup while undergoing chemotherapy.

Contents

1 Introduction 1

1.1 Motivation for this Research . 1

1.2 Summary of New Techniques Developed . 1

2 Governing Equations 3

2.1 Formulation of the Model . 3

2.2 Nondimensionalization . 5

2.3 Special Case: Avascular Tumor Growth . 7

2.4 Modeling Chemotherapy . 8

3 Level Set Methods for Evolving Interfaces 9

3.1 Basic Properties . 10

3.2 Initializing the Level Set Function . 11

3.3 Narrow Band Level Set Technique . 12

ii

4 Numerical Solution: General Technique 13

4.1 Initial Steps . 13

4.2 Main Loop . 13

5 Discretization of the Operators 14

5.1 Notation . 14

5.2 Temporal Discretizations . 14

5.3 Spatial Discretizations . 15

5.3.1 WENO Discretizations . 15

5.4 The Sign Function . 17

5.5 Application to the Level Set Function . 17

6 Poisson Solver 18

6.1 Introduction . 18

6.2 Classification of Node Points . 20

6.3 Discretizing the Equation . 21

6.4 Application to the Concentration and Pressure Equations 25

7 Other Discretizations 26

7.1 Normal Vector . 26

7.2 Curvature . 27

7.3 Gradients . 27

8 Extensions 27

8.1 Identifying the Closest Point on the Interface. 28

8.2 Gradient Extension . 29

8.3 Velocity Extension . 31

8.4 An Alternative Velocity Extension Technique . 31

9 Other Optimizations, Improvements, and Considerations 32

9.1 Gaussian Smoothing . 32

9.2 Width of the Band for the Narrow Band Technique and Size of the Computational

Domain . 33

9.3 Storage of Large Banded Matrices . 34

9.4 Optimized Banded Matrix-Vector Multiplication 35

iii

10 Convergence and Validation Results 36

10.1 Level Set Reinitialization and Curvature . 37

10.2 Poisson Solver . 38

10.3 Gradients . 39

10.4 Speed Extension . 40

10.5 Convergence of Overall Scheme . 42

10.6 Comparison with Known Results . 42

11 Preliminary Results and Discussion 43

11.1 A Parameter Study on GN . 43

11.2 A Parameter Study on GN with Chemotherapy . 44

11.3 Breakup of Tumor Undergoing Chemotherapy . 46

12 Future Work 46

List of Figures

1 Tumor with a necrotic core. 4

2 Tumor with a captured outer region and necrotic core. 8

3 Concept of the level set function. 10

4 Impact of two-dimensionality on the Poisson solver 25

5 Effect of discontinuity on κ and n . 26

6 Finding the closest point on the interface. 29

7 Comparison with boundary integral solution. 43

8 Parameter Study on GN . 44

9 Complex shape instability for a non-necrotic tumor undergoing chemotherapy at

t = 2.04. 45

10 Parameter Study on GN with Chemotherapy . 51

11 Chemotherapy regimen . 52

12 Breakup of a Tumor undergoing Chemotherapy . 53

List of Tables

1 Absolute error in ϕ after reinitialization. 37

2 Absolute error in κ after level set reinitialization. 38

iv

3 Absolute error in u for the Poisson solver in Example 1. 38

4 Absolute error in u for the Poisson solver in Example 2. 39

5 Absolute error in ux for the Poisson solver in Example 1. 40

6 Absolute error in ux for the Poisson solver in Example 2. 40

7 Absolute error in velocity extension without Gaussian smoothing. 41

8 Absolute error in velocity extension with Gaussian smoothing. 41

9 Absolute error in ϕ at t = 0.25. 42

v

1 Introduction

1.1 Motivation for this Research

While the past few decades have seen considerable progress in cancer research and encouraging

improvements in survival rates, cancer remains a timely problem. For instance, in 1980, malignant

neoplasms (tumors) were the second-leading cause of death at 21% of all deaths in the United

States; twenty years later, cancer remains the second-leading cause of death at an increased rate

of 23% of all deaths [1].

In the meantime, the level of cooperation between medicine, the mathematics, and the physi-

cal sciences has increased. Interdisciplinary journals are thriving (e.g., Mathematical Biosciences

and the Journal of Mathematical Biology), and techniques from once unrelated fields such as com-

putational fluid mechanics are being applied to biophysical and biomedical problems. Computer

technology is advancing rapidly even as it becomes less expensive, allowing for the implementation

of increasingly sophisticated models at lower overall cost.

Given these trends, the time is ripe to develop and numerically implement mathematical mod-

els for tumor growth and chemotherapy, and such work has already begun. (See [5, 6, 17, 24, 10, 2]

for some examples and further sources.) The successful development and deployment of such a

model would have a great impact on cancer research and the development of treatments. Drug

researchers could use inexpensive computer power to analyze potential drug treatments, thereby

allowing more-focused, accelerated development of the most-promising drugs. Chemotherapists

could use the computational models to optimize treatment regimens while reducing patients’ drug

exposure. Practitioners could use such a computational tool to improve their diagnosis of cancer

and tailor available treatment options to individual patients.

1.2 Summary of New Techniques Developed

We began our numerical implementation with well-established finite difference and level set tech-

niques from computational fluid mechanics. We did not use the boundary integral method previ-

ously implemented in [10, 11] because it is not equipped for the complex morphological changes

observed in tumor masses. We chose finite difference techniques over finite element methods be-

cause they allowed for more rapid development.

In our first attempts at numerical implementation, we used essentially non-oscillatory (ENO)

1

methods and total variatation diminishing Runge-Kutta methods, along with a boundary con-

dition capturing Poisson solver as presented in [13]. We choose these methods for their robustness,

their lack of explicit smoothing, and their potential for high accuracy on a Cartesian grid. However,

these methods yielded sub-first-order overall convergence on the full moving boundary problem.

We consequently turned our attention to the developement of a state-of-the-art method to obtain

overall second-order accuracy in space and time. We also aimed to develop methods that could be

readily extended to three dimensions.

To attain this order of accuracy, we first developed a new Poisson solver capable of capturing

geometric (e.g., curvature) and other boundary data on complicated geometries. Our technique is

an extension of the ghost fluid method introduced by Aslam, Fedkiw, Merriman, and Osher in [4]

to higher accuracy with modifications and simplifications inspired by [13].

We then developed curvature and normal vector techniques that automatically detect discontinu-

ities in the level set function and apply appropriate one-sided differences, allowing greater stability

and accuracy during morphological changes. These techniques differ from the current approaches

which typically use centered differences for the curvature without considering the geometry and

use weighted averages for the normal vector. (See, for example, [9] and [26].)

When we used traditional PDE-based velocity extension techniques [23], we found that the perfor-

mance was unstable and highly inaccurate because the tumor equations are solved on the interior

of the moving boundary, and so the ENO (and weighted WENO) discretizations had insufficient

data to construct the difference operators. We therefore developed a pre-extension routine that

took full advantage of the geometric information afforded by the level set function to extend the

components of the gradient (or any quantity) using polynomial extension that preserves informa-

tion flow outward from the interface. We then have enough data to extend the velocity using the

standard PDE technique in [23]. We apply Gaussian filter techniques ordinarily used in image

processing to smooth the extended normal velocity, thereby preserving long-term stability without

decreasing the overall order of accuracy.

2

2 Governing Equations

2.1 Formulation of the Model

We shall implement and study a model for solid and necrotic tumor growth given by Cristini,

Lowengrub, and Nie in [10, 11], which is a new formulation of several classical models [5, 6, 17, 24].

In this model, we study a tumor occupying a volume Ω(t) with boundary ∂Ω, which we shall denote

by Σ. We describe the diffusion and consumption of nutrients (e.g., oxygen and glucose) with a

single nutrient concentration σ which accounts for their net effect. If Γ is the rate at which nutrient

concentration is added at any point and D is a diffusion constant, then the quasi-steady nutrient

concentration is given by

0 = D∇2σ + Γ. (1)

The quasi-steady state assumption holds because nutrient diffusion occurs on a much faster time

scale than tumor growth.

We assume the amount of nutrient concentration consumed by the tumor cells per time is λσ,

where λ is uniform. In the healthy tissue, nutrient is diffused but not consumed. Nutrient con-

centration is delivered by the blood vasculature at a linear rate −λB(σ − σB), where σB is the

(uniform) nutrient concentration in the blood; λB may vary with position.1 Thus, we have

Γ = −λB (σ − σB) +

−λσ if x ∈ Ω

0 else,
(2)

and

0 = D∇2σ − λB (σ − σB) +

−λσ if x ∈ Ω

0 else.
(3)

As nutrient is consumed throughout the volume Ω of the tumor, an intra-tumor nutrient concen-

tration gradient develops and σ decreases with distance from Σ. If the concentration drops below

a minimum value σN for tumor cell viability, the cells undergo necrosis, leading to the formation of

a necrotic core [11]. We denote this necrotic core by ΩN ⊆ Ω and define ΩP ⊆ Ω to be the region

in which the tumor cells are proliferating. Thus,

ΩN = {x : σ(x) < σN} . (4)

We denote the interface between the proliferating and necrotic regions by ΣN . Note that Ω =

ΩP ∪ ΣN ∪ ΩN . Please see Figure 1.
1Note that if σ > σB , delivery occurs at a positive rate.

3

&%

'$

ΩN

Ωp

ΣN

Σ

Figure 1: Tumor with a necrotic core.

We model the tumor as an incompressible fluid with a source due to cell proliferation and a

sink due to degradation of the necrotic cells; the velocity field u satisfies

∇ · u =

λP in ΩP

−λN in ΩN

0 else,

(5)

where λP is the net cell proliferation rate and λN is the rate of volume loss due to disintegration

and enzymatic breakdown of cellular debris. We model λP by

λP = bσ − λA, (6)

where b is a constant related to the cell mitosis rate and λA is the uniform apoptosis (cell death)

rate. We note that the model sets a characteristic mitosis rate

λM = bσ∞, (7)

where σ∞ is a uniform nutrient concentration far from Σ.

We assume the velocity satisfies Darcy’s law [17]:

u = −µ∇P, (8)

where µ is the cell mobility and P is the pressure.

Far from Σ, we assume the nutrient concentration is a constant σ∞. If ΩD is the computational

domain containing Ω and if ∂ΩD is far from Σ, then we apply

σ
∣∣∣
∂ΩD

= σ∞. (9)

4

We model the cell-to-cell adhesive forces in Ω by a surface tension on the boundary Σ (a Laplace-

Young boundary condition), and far from the interface, P = P∞. Thus,

[P]
∣∣∣
Σ

= γκ (10)

P
∣∣∣
∂ΩD

= P∞, (11)

where γ is constant and κ is the mean curvature.

By (5) and (8), the pressure satisfies the system

−µ∇2P =

bσ − λA in ΩP

−λN in ΩN

0 else,

[P]
∣∣∣
Σ

= γκ,

P
∣∣∣
∂ΣD

= P∞. (12)

We note that as P ≡ P∞ satisfies ∇2P = 0, P |∂ΩD
= P∞, we can replace the above by

−µ∇2P =

bσ − λA in ΩP

−λN in ΩN ,

P
∣∣∣
Σ

= P∞ + γκ,

P ≡ P∞ in ΩD − Ω. (13)

Lastly, the velocity on the interface is given by

V = u · n = −µ∇P · n. (14)

Because the velocity depends on the gradient of P only, P∞ does not affect the evolution of the

interface. Therefore, we will typically set P∞ = 0 for simplicity.

2.2 Nondimensionalization

We begin by noting that the pressure system (12) reveals an intrinsic length scale

LD =

√
D

λB + λ
, (15)

where λB is a characteristic value of λB . If λB = 0, then LD estimates the stable size of an

avascular tumor [10]. We also have an intrinsic relaxation time scale λ−1
R given by

λR =
µγ

L3
D

. (16)

5

Using these scales, we introduce the dimensionless variables

x̂ =
x
L

, t̂ = λRt (17)

and use ̂ to denote differentiation in the dimensionless variables.

Next, we nondimensionalize the nutrient concentration by

c =
σ

σ∞
, (18)

where c is the nondimensional concentration field, and

0 = ∇̂2c + B (x̂)−

(
1+

λB
λ

1+
λB
λ

)
c in Ω

(
λB
λ

1+
λB
λ

)
c else,

c
∣∣∣
∂ΩD

= 1, (19)

where B is the dimensionless function given by

B (x̂) =
σB

σ∞
λB (x̂)
λB + λ

. (20)

We also introduce the nondimensional parameter

N =
σN

σ∞
, (21)

with which we define ΩN to be the region where c < N .

In the case where λB ≡ λB and N = 0, (20) simplifies to equation (55) in [10], the dimensionless

concentration equation in Ω becomes

0 = ∇̂2c + B − c in Ω

c
∣∣∣
∂ΩD

= 1, (22)

and we can obtain the formulation for the dimensionless concentration Γ given in [10] through the

relation

c = Γ(1−B) + B. (23)

We nondimensionalize the pressure by

P =
γ

LD
p̂. (24)

If we define the dimensionless parameters

A =
λA

λM
, G =

λM

λR
, and GN =

λN

λM
, (25)

6

then the nondimensionalized pressure is given by

∇̂2p̂ =

−G (c−A) in ΩP

GGN in ΩN ,
(26)

p̂ ≡ LDP∞
γ

in ΩD − Ω, (27)

and the boundary condition is given by

p̂
∣∣∣
Σ

=
LDP∞

γ
+ κ̂. (28)

Notice that if B ≡ 0, then A and G coincide with A and G in [10]. If λB ≡ λB , N = 0, P∞ = 0,

and if we define A and G as in [10], then we can obtain the nondimensional pressure p in [10]

through the relation

p̂ = p + (1− Γ)G + AG
x̂ · x̂
2d

. (29)

Lastly, the nondimensional velocity is given by

V̂ = −n̂ · ∇̂p̂. (30)

In the remainder of the text, we shall drop the ̂ notation for simplicity.

2.3 Special Case: Avascular Tumor Growth

In this paper, we shall focus on avascular (or pre-vascular) tumor growth In this case λB ≡ 0,

B ≡ 0, A = A, and G = G as in [10]. (We shall henceforth use A and G rather than A and G, as

they coincide in this case.)

As before, we denote the proliferating region of the tumor by ΩP , the necrotic region by ΩN ,

and the computational domain by ΩD. By Σ we denote the boundary of the tumor, and ΣN marks

the tumor-necrotic interface as earlier. The tumor can pinch off and capture regions of the outer

domain [10]; we denote the union of all such captured regions by ΩC . Note that Ω = ΩP ∪ΩN ∪ΣN .

The interface between the tumor cells and the outer region is Σ. Where necessary, we differentiate

between Σi (the interface between the tumor and captured regions) and Σo (the interface between

the tumor and the outer portion of the computational domain). See Figure 2.

For simplicity, we shall set c = 1 in the outer domain (including ΩC) and on Σ; our resulting

system is

∇2c = c in Ω

c|Σ = 1.
(31)

7

ΩP

Σo

ΩN

ΣN

ΩC

Σi

Figure 2: Tumor with a captured outer region and necrotic core.

The pressure is modeled as before: we set p = P∞ = 0 in the outer domain and ΩC , and we apply

the surface tension boundary condition to both Σo and Σi:

∇2p =

−G(c−A) in ΩP

GGN in ΩN

p
∣∣
Σ

= κ

p = 0 in ΩC .

(32)

As before, the velocity is given by

V
∣∣
Σ

= −n · ∇p. (33)

Notice that (31) and (32) are defined on Ω. We shall refer to these as interior Poisson problems.

2.4 Modeling Chemotherapy

Recall that the parameter A is related to the relative strength of the apoptosis and mitosis rates

of the tumor cells:

A =
λA

λM
.

Within the context of the model, cancer treatments can be considered as external processes that

increase the apoptosis rate λA of the tumor cells. Consequently, we model an active therapy session

by increasing the value of A.

By chemotherapy session or treatment session, we mean the administration of a chemical species

(with uniform concentration throughout the domain) that temporarily increases the ratio of apop-

tosis to mitosis in the tumor cells. We model the presence of the chemical species as an elevated

value of A above a baseline level A0.

8

We characterize a chemotherapy session as a triple (t1, t2, A), where A > A0 and 0 ≤ t1 < t2.

We model the treatment regimen by

A(t) =

An if tn ≤ t < tn+1 for some n

A0 else.
(34)

In [11], it was shown numerically and verified experimentally that necrosis is the dominant form of

tumor cell death in the avascular regime because necrosis and cell proliferation occur on a faster

time scale than apoptosis. Therefore, we shall set N and GN nonzero and A0 small when modeling

chemotherapy.

In this paper, An is constant for each n. In future work, we will model the dissipation of the

chemical species over time (which would yield a decay in An throughout each treatment session).

We will also model the development of resistance: the surviving tumor cells adapt to the chemical

species over time, leading to an additional decay of An during each treatment session and reducing

the effective initial level of each An.

3 Level Set Methods for Evolving Interfaces

The most traditional method used to track an evolving interface is to do so explicitly with a

“marker” technique: the initial interface is specified, and markers are placed at predetermined

intervals and sorted. As time progresses, each marker’s position is updated according to the veloc-

ity field. While this method is straightforward to implement, there are several drawbacks to the

approach.

As the interface evolves, the markers tend to lose their uniform spacing, leading some regions

of the interface to be poorly resolved. This problem is solved by periodically redistributing the

markers. Frequently, the interface’s total arclength changes over time, which means that the inter-

face will no longer be resolved at the original level. This can be overcome by adding and subtracting

markers and reordering them when redistributing the markers.

A larger problem occurs when the morphology of the interface changes (e.g., the interface splits or

reconnects). In its most basic form, the marker method fails in such a case because it assumes the

interface is a simple closed curve. This problem can be solved by using a linked list data structure

for the various interface segments, but such an approach can be difficult and costly to implement,

9

particularly in three dimensions and in automating the detection of morphological changes in the

interface.

In our particular application, we anticipate frequent morphological changes in the interface. For

this reason, we use the level set method developed by Sethian and Osher and described in [26] to

implicitly track the boundary.

3.1 Basic Properties

To implement the level set method, we introduce a level set function ϕ and require that it satisfy

several properties:

1. If Σ denotes the interface, then

Σ = {x ∈ Rn : ϕ(x) = 0} .

The zero level set of ϕ coincides with the interface.

2. ϕ(x) < 0 for points inside the tumor boundary and ϕ(x) > 0 for points outside the boundary.

See Figure 3 for an illustration of this concept.

¯
¯
¯
¯
¯
¯
¯̄

L
L

L
L

L
L

LL
ϕ

ϕ=0

-
x

¢
¢̧
y

6
ϕ

¢
¢
¢
¢
¢

¢
¢
¢
¢
¢

Σ

Figure 3: Concept of the level set function: representing a circle with a level set function.

In addition, we stipulate that ϕ is a signed distance function:

3. |ϕ(x)| = d (x, Σ) .

An immediate advantage of this formulation is that geometric quantities are readily calculated

based upon the level set function. We find the normal vector (oriented in the outer direction) by

n =
∇ϕ

|∇ϕ| .

10

Note that |∇ϕ| = 1 because ϕ is a signed distance function. However, we retain the denominator

because numerical error may perturb |∇ϕ| away from 1. The curvature is also readily calculated

from the level set function. In two dimensions,

κ = ∇ · n
= ∇ · ∇ϕ

|∇ϕ|

=
ϕxxϕ2

y − 2ϕyϕxϕxy + ϕyyϕ2
x(

ϕ2
x + ϕ2

y

) 3
2

, (35)

and in three dimensions, the mean curvature is

κM = ∇ · n
= ∇ · ∇ϕ

|∇ϕ|

=

(ϕyy + ϕzz)ϕ2
x + (ϕxx + ϕzz)ϕ2

y + (ϕxx + ϕyy)ϕ2
z

−2 [ϕxϕyϕxy + ϕxϕzϕxz + ϕyϕzϕyz]

(
ϕ2

x + ϕ2
y + ϕ2

z

) 3
2

, (36)

and the Gaussian curvature is given by

κG =

ϕ2
x

(
ϕyyϕzz − ϕ2

yz

)
+ ϕ2

y

(
ϕxxϕzz − ϕ2

xz

)

+ϕ2
z

(
ϕxxϕyy − ϕ2

xy

)
+ 2 [ϕxϕy (ϕxzϕyz − ϕxyϕzz)]

+2 [ϕyϕz (ϕxyϕxz − ϕyzϕxx) + ϕxϕz (ϕxyϕyz − ϕxzϕyy)]

(
ϕ2

x + ϕ2
y + ϕ2

z

)2 . (37)

If u denotes the velocity field, we evolve the interface according to

∂tϕ + u · ∇ϕ = ∂tϕ + V (u) |∇ϕ| = 0,

where

V (u) = u · ∇ϕ

|∇ϕ| = u · n

is the normal velocity of the interface. For the remaining discussion, we shall restrict our discussion

to two dimensions; the three-dimensional case is completely analagous.

3.2 Initializing the Level Set Function

Suppose we are given a two-dimensional interface Σ. We describe here how to generate the signed

distance function to Σ on a discrete lattice {ϕi,j} to be used in numerical simulation. To initialize

11

the lattice, we first set

ϕi,j =

−1 if
(
xi, yj

)
is inside the interface

0 if
(
xi, yj

)
is on the interface

1 if
(
xi, yj

)
is outside the interface.

Next, for each point (xi, yj), we search {ϕi,j} for the closest point (x`, ym) such that

sign (ϕi,j) 6= sign (ϕ`,m)

and reassign

ϕi,j = sign (ϕi,j)
√

(xi − x`)
2 + (yj − ym)2.

If the interface is already specified as a level set function, then we can skip the preceding steps.

We then solve the following partial differential equation to steady-state:

ϕτ = sign
(
ϕ0

)
(1− |∇ϕ|) , (38)

where ϕ0 is the original level set function and τ is pseudo-time. Notice that when ϕτ = 0, either

|∇ϕ| = 1 or sign(ϕ0) = 0, so the steady-state solution is a distance function (|∇ϕ| = 1) with

the same zero level set as ϕ0 (sign
(
ϕ0

)
= 0). If we only require the level set function within

a fixed distance R of the interface, then we solve (38) until τ = R [27]. Equation (38) is also

used to reinitialize the level set function between iterations when evolving the entire pressure-

concentration-interface system.

3.3 Narrow Band Level Set Technique

Our primary goal is to sucessfully calculate the location of the interface Σ over time. Therefore, we

seek to update ϕ only as much as is necessary to accurately advect the interface. This can be done

by only updating ϕ within a distance R of the interface. Given an initialized level set function ϕ,

the points which fall within that distance are

{
x : |ϕ(x)| ≤ R + ε

}
(39)

for some small ε. This set is referred to as a “narrow band” about ϕ, R is the width of the band,

and the technique is known as the “narrow band” level set method. The value of R is determined

by the numerical implementation. We shall revisit this point in a later section. Please see [26, 21]

for further details on the method.

12

4 Numerical Solution: General Technique

We employ finite differences to solve the concentration-pressure-interface system. We begin by

enclosing the interface within a larger, rectangular computational domain [a, b] × [c, d]. (We

will postpone our discussion of how large [a, b] × [c, d] must be for a later part of this paper.)

Next, we discretize the computational domain using regular step sizes ∆x and ∆y to obtain

{(xi, yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}, where M and N denote the number of node points in the x-

and y-directions, respectively. For convenience, we will generally take ∆x = ∆y. We then proceed

according to the following procedure:

4.1 Initial Steps

1. Introduce and initialize a level set function ϕ to match the interface Σ as discussed earlier.

Introduce all necessary parameters.

2. Determine whether there are sufficiently many node points between Σ and the computational

boundary. If not, extend x and y and reinitialize ϕ.

4.2 Main Loop

Once we have initialized the code, we enter the main control loop of the algorithm. We advance in

time and do the following for each fixed time step:

1. Check for proximity of the interface Σ to the computational boundary. If there is insufficient

space between Σ and ∂ ([a, b]× [c, d]), then extend x and y and reinitialize ϕ. Update A

according to the chemotherapy choice.

2. Reinitialize the level set function ϕ, and calculate the normal vector n and the curvature κ

where required.

3. Solve for the concentration c and pressure p (in that order).

4. Calculate the gradient ∇p inside and on Σ, and extend the components of ∇p beyond Σ.

5. Calculate the normal velocity V in a band about Σ according to (33). Extend the normal

velocity V normally from the interface Σ, and filter high-frequency numerical noise from the

extended speed.

6. Update ϕ according to the normal velocity V .

7. Repeat (1)-(6) for each step of the time discretization.

13

5 Discretization of the Operators

Having laid out the general numerical scheme, we now detail the discretization of the operators.

5.1 Notation

Given a sufficiently differentiable function f(x, y, t) and a discretization {xi, yj} of (x, y), we denote

f(xi, yj , t) by fi,j(t). If f is a function of fewer or more variables, we adjust the indexing accordingly.

We define the following finite differential and finite difference operators for a function f(x):

∆+f = fi+1 − fi

∆−f = fi − fi−1

∆0f = fi+1 − fi−1

D+f =
∆+f

∆x
= f ′(xi) +O (∆x)

D−f =
∆−f

∆x
= f ′(xi) +O (∆x)

D0f =
∆0f

2∆x
= f ′(xi) +O (

∆x2
)
. (40)

These are all obtained by expanding f in a Taylor series about xi and evaluating at x = xi±1.

When f is a function of multiple variables, we shall specify the intended finite difference (dif-

ferential) with an appropriate variable subscript. (e.g., D+
x f .) If only one index varies, we drop

the fixed indicies for simplicity of notation.

The operators can be applied right-to-left to obtain higher-order differences. For example,

D++
x f = D+

x

(
D+

x f
)

= D+
x

(
fi+1 − fi

∆x

)

=
1

∆x

(
fi+2 − fi+1

∆x
− fi+1 − fi

∆x

)

=
fi+2 − 2fi+1 + fi

∆x2
= f ′′(xi+1) +O (

∆x2
)
.

5.2 Temporal Discretizations

For this problem, we will use total variation diminishing Runge-Kutta (TVD-RK) schemes to

approximate the temporal derivatives. These schemes yield highly accurate solutions without in-

troducing artificial oscillations and instabilities in the time stepping [16, 14, 15].

14

Suppose we are given a partial differential equation of the form

ft = L(f, t),

where L is a spatial operator. Then the third-order TVD-RK scheme is given by [14, 15]

f (0) = fk

f (1) = f (0) + ∆tL
(
f (0), tk

)

f (2) = f (0) +
1
4
∆t

[
L

(
f (0), tk

)
+ L

(
f (1), tk + ∆t

)]

f (3) = f (0) +
1
6
∆t

[
L

(
f (0), tk

)
+ L

(
f (1), tk + ∆t

)
+ 4L

(
f (2), tk +

1
2
∆t

)]

fk+1 = f (3). (41)

In our problem, L(ϕ, t) will be of the form

L(ϕ, t) = V |∇ϕ| or L(ϕ, t) = V · ∇ϕ. (42)

In these cases we shall use the CFL condition

∆t ≤ 1
2 max (|V |)∆x

to choose ∆t to ensure convergence and numerical stability.

5.3 Spatial Discretizations

5.3.1 WENO Discretizations

Chakravarthy, Engquist, Harten, Osher and Shu developed the now-classic essentially non-oscillatory

(ENO) schemes to solve hyperbolic problems while attaining high-order accuracy, avoiding undue

oscillations and instabilities near shocks, and maintaining sharper discontinuities where desired

[19, 26]. Chan, Liu, and Osher built upon the ideas of the ENO schemes when they devised

the first weighted ENO (WENO) schemes. Here, the core idea is to use a linear combination of

the candidate stencils of the ENO schemes to obtain a higher-order method when the solution is

smooth and to emulate the ENO schemes near shocks and discontinuities [19, 18]. This is acheived

by calculating weights that converge to the ENO schemes near shocks and otherwise converge to

the highest-order stencil available for a given number of candidate stencils. In particular, we are

interested in the third-order and fifth-order WENO methods. We use the formulation found in

[18], which we give below for reference.

15

Third-Order WENO Method: For ease of notation, let us define

(u)+ = max (u, 0)

(u)− = min (u, 0) .

To obtain the third-order WENO scheme, we first calculate

ϕ−x =
1
2

(
∆+

x ϕi−1

∆x
+

∆+
x ϕi

∆x

)
− ω−,x

2

(
∆+

x ϕi−2

∆x
− 2

∆+
x ϕi−1

∆x
+

∆+
x ϕi

∆x

)

ϕ+
x =

1
2

(
∆+

x ϕi−1

∆x
+

∆+
x ϕi

∆x

)
− ω+,x

2

(
∆+

x ϕi+1

∆x
− 2

∆+
x ϕi

∆x
+

∆+
x ϕi−1

∆x

)
, (43)

where

r−,x =
ε + (∆−

x ∆+
x ϕi−1)

2

ε +
(
∆−

x ∆+
x ϕi

)2

ω−,x =
1

1 + 2r2−,x

r+,x =
ε + (∆−

x ∆+
x ϕi+1)

2

ε +
(
∆−

x ∆+
x ϕx

)2

ω+,x =
1

1 + 2r2
+,x

. (44)

We calculate ϕ±y , r±,y, and ω±,y similarly. Then, we approximate V |∇ϕ| by

∣∣∇+ϕ
∣∣ =

√((
ϕ−x

)+
)2

+
((

ϕ+
x

)−)2

+
((

ϕ−y
)+

)2

+
((

ϕ+
y

)−)2

∣∣∇−ϕ
∣∣ =

√((
ϕ−x

)−)2

+
((

ϕ+
x

)+
)2

+
((

ϕ−y
)−)2

+
((

ϕ+
y

)+
)2

V |∇ϕ| ≈ (V)+
∣∣∇+ϕ

∣∣ + (V)−
∣∣∇−ϕ

∣∣ . (45)

If we approximate (u, v) · ∇ϕ instead, we get

(u, v) · ∇ϕ ≈ (u)+ ϕ−x + (u)− ϕ+
x

+(v)+ ϕ−y + (v)− ϕ+
y . (46)

Fifth-Order WENO Method: The fifth-order WENO method cannot be stated as simply as

the third-order method. For a given point (xi, yj), we define

ϕ−x,i =
1
12

(
−∆+ϕi−2

∆x
+ 7

∆+
x ϕi−1

∆x
+ 7

∆+
x ϕi

∆x
− ∆+

x ϕx+1

∆x

)

−ΦWENO

(
∆−

x ∆+
x ϕi−2

∆x
,
∆−

x ∆+
x ϕi−1

∆x
,
∆−

x ∆+
x ϕi

∆x
,
∆−

x ∆+
x ϕi+1

∆x

)
(47)

and

ϕ+
x,i =

1
12

(
−∆+ϕi−2

∆x
+ 7

∆+
x ϕi−1

∆x
+ 7

∆+
x ϕi

∆x
− ∆+

x ϕx+1

∆x

)

+ΦWENO

(
∆−

x ∆+
x ϕi+2

∆x
,
∆−

x ∆+
x ϕi+1

∆x
,
∆−

x ∆+
x ϕi

∆x
,
∆−

x ∆+
x ϕi−1

∆x

)
, (48)

16

where

ΦWENO(a, b, c, d) =
1
3
(a− 2b + c)ω0 +

1
6
(b− 2c + d)

(
ω2 − 1

2

)
. (49)

In (49), we have

IS0 = 13(a− b)2 + 3(a− 3b)2,

IS1 = 13(b− c)2 + 3(b + c)2,

IS2 = 13(c− d)2 + 3(3c− d)2,

α0 =
1

(ε + IS0)
2 ,

α1 =
6

(ε + IS1)
2 ,

α2 =
3

(ε + IS2)
2 ,

ω0 =
α0

α0 + α1 + α2
, and

ω2 =
α2

α0 + α1 + α2
. (50)

We calculate ϕ±y,j similarly, and we approximate V |∇ϕ| as in (45). The quantity (u, v) · ∇ϕ is

obtained as in (46). We shall use the fifth-order WENO method in all our discretizations of |∇ϕ|
and u · ∇ϕ.

5.4 The Sign Function

A common discretization of the Heaviside and sign functions [22] is given by

Hδ(ϕ) =

0 if ϕ < −δ

1
2

(
1 + ϕ

2δ + 1
π sin

(
πϕ
δ

))
if |ϕ| ≤ δ

1 if ϕ > δ,

signδ(ϕ) = 2
(

Hδ(ϕ)− 1
2

)
, (51)

where δ is a small positive number. In all our calculations, we use δ = ∆x.

5.5 Application to the Level Set Function

Recall that we advect the interface Σ by solving

ϕt + V |∇ϕ| = 0, (52)

where V is the normal velocity defined in (33). In our numerical implementation, we discretize

V |∇ϕ| with the fifth-order WENO method. We approximate the temporal derivative with the

17

third-order TVD-RK method, where

L(ϕ) = −V |∇ϕ| . (53)

Note that we must solve for the concentration and pressure at each intermediate step of the TVD-

RK discretization in order to obtain V .

We reinitialize the level set function by solving

ϕτ − sign(ϕ0) (1− |∇ϕ|) = 0. (54)

We discretize sign(ϕ0) |∇ϕ| with the fifth-order WENO method and approximate the pseudo-

temporal derivative (in τ) by the third-order TVD-RK method, where

L(ϕ) = sign(ϕ0)− sign(ϕ0) |∇ϕ| . (55)

6 Poisson Solver

6.1 Introduction

Our solution technique for the pressure and concentration is an extension of the ghost fluid method

in [4] to higher-order accuracy with modifications and simplifications inspired by [13]. In this

method, we solve the interior problem in a complex domain

∇2u = f (u,x) in Ω

u = g (x) on Σ,
(56)

by embedding the problem in a rectangular domain [a, b] × [c, d] and extending u as a constant γ

into Ωo = [a, b]× [c, d]− Ω, which we refer to as the outer domain. Thus, we solve the system

∇2u = f (u,x) in Ω

u = g (x) on Σ

u = γ in [a, b]× [c, d]− Ω.

(57)

We shall discretize (57) on the entire domain and include the rows with trivial solutions to preserve

row (or column) ordering of the resulting coefficient matrix.

The solution u is assumed to be smooth within Ω up to Σ. For simplicity, we shall refer to Ω

as the inner domain and Ωo as the outer domain. We assume that Σ is defined by means of a level

set function ϕ as described before. Also, we assume that g is a function that can be evaluated at

18

all node points near Σ.

The core idea of the technique begins with the standard centered difference for uxx: if [xi−1, xi+1]

lies entirely in Ω, then

uxx =
ui−1 − 2ui + ui+1

∆x2
+O (

∆x2
)
. (58)

However, if the interface intersects [xi−1, xi+1], then u is potentially discontinuous and the finite

difference in (58) is invalid in its current form. Supposing that the interface occurs between xi and

xi+1, we seek to replace ui+1 in (58) with ûi+1, a smooth extension of u in the inner domain to xi+1.

In the ghost fluid method, this is done by extrapolating ûi+1 and any coefficient data from the

values at xi−1 and xi and relationships between the inner and outer domains (via equations of state

and boundary conditions). These extrapolated values are then explicitly stored as “ghost fluid”

points. In [13], Fedkiw et al. avoided this explicit storage by relating ui and ui+1 solely through

jump boundary conditions. After this relationship was established, the terms in the discretization

were rearranged, leaving the standard centered difference stencil on the left-hand side and all other

terms in the right-hand side. In essence, the method works by introducing an additional source /

sink function to the equation that acts similarly to a delta function in satisfying the jump boundary

conditions.

Our technique combines and extends these two approaches. We obtain ûi+1 by cubic interpo-

lation of ui−3, ui−2, ui−1, and the boundary data, obtaining both a new computational stencil

and right-hand side. We choose the boundary value for the interpolation by precisely locating

the interface between xi and xi+1 (by cubic interpolation of ϕ), interpolating the boundary data

function, and evaluating that interpolation at the interface. When ui−3 or ui−2 is not in the inner

domain, we modify our approach to use lower-order interpolation.

Our approach attains many of the desirable features in [13]. The resulting solution automatically

satisfies the boundary condition at the estimated location of the interface, rather than on nearby

computational nodes; this is known as subcell resolution. The method is robust and straightforward

to implement, even for complex geometries. We can avoid the complications of solving a problem

on an irregular grid by rather solving a diffusion problem on the entire rectangular grid. As in

[13], our method can be applied dimension-by-dimension, although a small consideration needs to

be made for the interaction of the spatial dimensions in one case.

19

Our approach differs from the boundary condition capturing (BCC) method in [13] in several

respects. The BCC method was designed to solve a variable-coefficient Poisson problem on a rect-

angular domain with internal jump conditions in the solution and normal derivative posed on a

complex internal boundary. The method determines the location of the interface and approximates

the boundary data with linear interpolation, although it could be extended to higher-order inter-

polation; in [7] and [8], it is stated that higher-order interpolation is unnecessary for second-order

convergence when the position of the interface is known precisely. While the BCC method could be

modified and applied to our problem, we found it yielded sub-first-order convergence when applied

to the full moving boundary problem with geometric boundary conditions. In [7], it was also stated

that the BCC method only gives first-order accuracy of the interface when applied to a moving

boundary problem.

Our method was specifically designed to solve the interior Poisson problem with Dirichlet con-

ditions on a complex domain. Our technique uses high-order (quadratic and cubic) interpolation

of the level set function and the boundary data for higher-accuracy subcell resolution and can be

readily extended to higher accuracy. Because the BCC method was designed for problems with

jump boundary conditions, it classifies points as belonging to either the inner or outer domain. Our

technique, designed for the Dirichlet problem, classifies points as lying in the inner or outer domain

or on the boundary, allowing us to use precisely-interpolated, known values of the boundary data

in place of u in the stencil to improve accuracy. Lastly, our technique attains second-order accuracy

in a wide variety of cases, including those with geometric boundary conditions (e.g., curvature).

We note that while our method was designed for the Poisson problem ∇ · (β∇u) with β ≡ 1, it

could be extended to the variable β case.

6.2 Classification of Node Points

The Poisson solver solves (56) by solving (57) on the full rectangular domain. For points contained

in Ω, the solver proceeds by constructing an approximation to ∇2u at each point (xi, yj) while

considering which points of 5-point stencil

{(xi, yj), (xi, yj±1) , (xi±1, yj)}

20

are contained in Ω, in Ωo, and on Σ. The level set formulation of the interface makes this classifi-

cation a straightforward matter:

ϕi,j

< 0 if xi,j ∈ Ω

= 0 if xi,j ∈ Σ

> 0 if xi,j ∈ Ωo.

However, the classification must be modified to take machine floating-point arithmetic into account.

We define machine zero εmach by

εmach = max {ε > 0 : 1.0 + ε = 1.0} (59)

in machine floating-point arithmetic. Note that because computer hardware can only represent

finitely-many floating-point numbers, this set has a unique maximum. On most modern, 32-bit

machines, this number is typically 2−53 ≈ 1.11 e -16. Any element of [−εmach, εmach] should be

interpreted as zero, and conversely, zero could be represented as any floating-point number in that

range. Thus, in machine floating-point arithmetic, “zero” should be considered as an equivalence

class of the floating-point numbers in the range [−εmach, εmach].

Accordingly, we modify our classification to

ϕi,j

< −ε if xi,j ∈ Ω

∈ [−ε, ε] if xi,j ∈ Σ

> ε if xi,j ∈ Ωo,

(60)

where ε ≥ εmach. In our calculations, we generally use ε = 2εmach.

6.3 Discretizing the Equation

We discretize (57) on the full rectangular domain although we are solving the interior problem.

The rows corresponding to the trivially solvable discretizations are included in the coefficient ma-

trix because this preserves the row (or column) ordering of the cofficient matrix, which makes it a

banded matrix that can be stored more efficiently in memory.

The discretization on Σ and in Ωo is trivial:

1. Case: ϕi > ε:

By (60), xi ∈ Ω0, so we set ui = γ. To improve the conditioning number of the coefficient

matrix, we shall use
−1
∆x2

ui =
−1
∆x2

γ. (61)

21

2. Case: −ε ≤ ϕi ≤ ε:

In this case, xi ∈ Σ, so we set ui = g(xi). Again, we set

−1
∆x2

ui =
−1
∆x2

g(xi). (62)

to improve the conditioning number of the coefficient matrix.

When considering points in Ω, we must approximate ∇2u. Let us first consider the discretization

of uxx. We shall then approximate ∇2u dimension-by-dimension, as the discretization of uyy is

identical except in one case where the two-dimensionality is important. We proceed by classifying

the node points {(xi±1) , xi} . Consider the following cases:

3. Case: ϕi < −ε:

As xi ∈ Ω, we proceed to build the stencil to approximate uxx. The construction depends

upon whether the neighboring node points are also in the inner domain.

(a) Case: ϕi−1 < −ε and ϕi+1 < −ε:

In this case, the entire stencil is contained in the inner domain, so we can use the

standard second-order approximation to uxx = f :

1
∆x2

(ui−1 − 2ui + ui+1) = f(ui, xi). (63)

(b) Case: ϕi−1 < −ε and ϕi+1 ≥ −ε:

In this case, the interface is located between xi and xi+1 on the right-hand side of the

stencil. Let us denote this location by xΣ. We denote

xΣ = xi + θ ∆x, 0 < θ ≤ 1, (64)

where θ is determined by interpolating the level set function ϕ. The location of xΣ is

critical to the accuracy of the method, so we construct a cubic interpolation of ϕ through

the points in the set S = {xi−1, xi, xi+1, xi+2} and find the root between xi and xi+1.

(If there are multiple roots in that interval, they are too close together to be resolved by

the method. In this case, we use the root closest to that given by linear interpolation.)

This provides us with the subcell resolution introduced earlier.

Next, we evaluate g at the points in S, apply cubic interpolation to them, and eval-

uate the interpolation at xΣ. Let us denote the value of the interpolation by gΣ.

Our solution technique involves extending u from the inner domain to xi+1 and obtain-

ing a “ghost value” ûi+1. We determine ûi+1 by interpolating the neighboring values of

22

u contained in Ω. To maintain the second-order accuracy of the scheme, it is preferable

that we use third-order (cubic) interpolation of u to determine uΣ.

If xi−3, xi−2 ∈ Ω as described in (60), then we use cubic interpolation with ui−3, ui−2,

ui−1, and uΣ, where

uΣ = u(xΣ) = g(xΣ) = gΣ. (65)

Having estimated uΣ and ûi+1, we then approximate uxx = f by

1
∆x2

(ui−1 − 2ui + ûi+1) = f(ui, xi). (66)

If we use cubic interpolation of u, for instance, then ûi+1 is given by

ûi+1 = −3
(

1− θ

3 + θ

)
ui−3 + 8

(
1− θ

2 + θ

)
ui−2

−6
(

1− θ

1 + θ

)
ui−1 +

24
(1 + θ)(2 + θ)(3 + θ)

gΣ, (67)

and the stencil becomes

1
∆x2

{
− 3

(
1− θ

3 + θ

)
ui−3 + 8

(
1− θ

2 + θ

)
ui−2

+
[
1− 6

(
1− θ

1 + θ

)]
ui−1 − 2ui

+
24

(1 + θ)(2 + θ)(3 + θ)
gΣ

}
= f(xi). (68)

(c) Case: ϕi−1 ≥ −ε and ϕi+1 < −ε:

In this case, the interface is located between xi−1 and xi . Let us denote this location

by xΣ. We proceed as in the previous case, first defining 0 ≤ θ < 1 by

xΣ = xi−1 + θ∆x, (69)

and then extending the inner domain by interpolation to xi−1 to define ûi−1. If xi+2, xi+3 ∈
Ω, then we can use cubic interpolation as before, obtaining the discretization

1
∆x2

{
3

(
θ

θ − 4

)
ui+3 + 8

(
θ

3− θ

)
ui+2

+
[
1 + 6

(
θ

θ − 2

)]
ui+1 − 2ui

− 24
(θ − 2)(θ − 3)(θ − 4)

gΣ

}
= f(xi). (70)

(d) Case: ϕi−1 ≥ −ε and ϕi+1 ≥ −ε:

This case requires more careful consideration as a series of subcases:

23

i. Case: |ϕi−1| ≤ ε and |ϕi+1| ≤ ε:

In this case, xi±1 ∈ Σ, so we can construct an approximation to ∇2u = f by

1
∆x2

(
g(xi−1)− 2ui + g(xi+1)

)
= f(ui, xi). (71)

ii. Case: |ϕi−1| ≤ ε and ϕi+1 > ε:

In this case, xi−1 ∈ Σ and the interface also occurs between xi and xi+1 at

xΣ = xi + θ∆x, (72)

where θ is determined by interpolation of ϕ.

As with the case where xi−1 ∈ Ω, we construct a stencil for ∇2u as

∇2u ≈ 1
∆x2

(
ui−1 − 2ui + ûi+1

)

=
1

∆x2

(
g(xi−1)− 2ui + ûi+1

)
, (73)

as xi−1 ∈ Σ. To determine ûi+1, we fit a linear curve through uΣ = gΣ with slope

determined by ui and ui−1 = gi−1:

ûi+1 = (1− θ)
(
ui − gi−1

)
+ uΣ

= (1− θ)
(
ui − gi−1

)
+ gΣ, (74)

where as before gΣ = g(xΣ). This leads to a stencil

1
∆x2

(
θgi−1 − (1 + θ)ui + gΣ

)
= f(ui, xi). (75)

iii. Case: ϕi−1 > ε and |ϕi+1| ≤ ε:

In this case, xi+1 ∈ Σ and the interface also occurs between xi−1 and xi at

xΣ = xi−1 + θ∆x, (76)

where θ is determined by interpolation of ϕ.

As in the previous case, we construct a linear curve through uΣ = gΣ with slope

determined by ui and ui+1 = gi+1 to find ûi−1, obtaining the discretization

1
∆x2

(
gΣ + (θ − 2)ui + (1− θ)gi+1

)
= f(xi, ui). (77)

iv. Case: ϕi−1 > ε and ϕi+1 > ε:

The interface occurs on both the right- and left-hand sides of the stencil, and there

24

is insufficient data to interpolate both ûi−1 and ûi+1. In this case, we take uxx = 0

and consider the y-direction. If the same occurs and we take uyy = 0, then we say

that the discretization fails to resolve Σ around (xi, yj) and take the point to fall in

Ωo. Hence, we set
−1
∆x2

ui =
−1
∆x2

γ. (78)

Notice that we cannot make such a distinction without considering the two-dimensionality

of the problem. (See Figure 4.)

t

xi−1 xi xi+1

yj−1

yj

yj+1

ϕ<−ε

ϕ>ε

t

xi−1 xi xi+1

yj−1

yj

yj+1

ϕ<−ε

ϕ>ε

Figure 4: Impact of Two-Dimensionality on the Poisson Solver: In the left figure, the interface Σ

is unresolved near (xi, yj). In the right figure, uyy = 0 but the interface is still resolved.

6.4 Application to the Concentration and Pressure Equations

Using the method described in the previous section, we discretize the concentration equation for c

in (31) by using

f(c,x) = c, g(c,x) = 1, γ = 1 (79)

in (57).

Similarly, we discretize the pressure equation for p in (32) with

f(p,x) =

−G (c−A) in ΩP

GGN in ΩN

, g(p,x) = κ, γ = 0 (80)

in (57).

25

ϕ <−ε

ϕ <−εϕ >εϕ >ε

r r r
r

r

x1

r r r
r

r

x0

ϕ =0
r r r r r r r

¡
¡

¡
¡

¡
¡¡

@
@

@
@

@@
ϕ

x1

Figure 5: Effect of discontinuity on κ and n: There are two interfaces close together, as shown in

the left figure. The middle curve shows the points equidistant from both interfaces. The right figure

shows a cross-section through x1 of the level set function; the “peak” in the middle is equidistant

from the two interfaces and a point of discontinuity in ϕx and ϕy. The standard techniques work

well at x0 (where ϕx and ϕy are continuous), whereas they break down numerically at x1.

7 Other Discretizations

7.1 Normal Vector

Recall that for our level set formulation, n = ∇ϕ/ |∇ϕ| and |∇ϕ| = 1. However, this formulation

breaks down numerically for points nearly equidistant from two interfaces. Two features charac-

terize this breakdown: one or both partial derivatives of ϕ demonstrates a sign change across the

standard 5-point stencil, and the norm of the gradient calculated by the standard centered differ-

ences is not equal to 1. See Figure 5. Therefore, we define a one-sided difference for this situation:

1. Calculate ϕx and ϕy using the standard centered differences. Define d =
√

ϕ2
x + ϕ2

y. If

|d− 1| ≤ η, define n = 1
d (ϕx, ϕy), where η is some small positive tolerance. In our simula-

tions, we chose η = .25 because it worked well to detect all the discontinuities in ϕx and ϕy

of interest.

2. Otherwise, first consider ϕx;compute ∆−
x ϕ and ∆+

x ϕ. If (∆−
x ϕ) (∆+

x ϕ) > ε, keep ϕx as defined

in the previous step, as there is no sign change in ϕx. Otherwise, take

ϕx =
1

∆x

∆−
x ϕ if |ϕi−1| < |ϕi+1|

∆+
x ϕ else.

26

That is, we use the one-sided difference involving the points closest to the interface. Define

ϕy similarly, recalculate d, and define n = 1
d (ϕx, ϕy).

7.2 Curvature

When calculating the curvature κ, we use the standard centered differences for each of the partial

derivatives in (35) except when the level set function has discontinuous partial derivatives within

the 5-point stencil. In that case, we modify our technique to use one-sided differences of ∇ · n:

1. If the test |d− 1| ≤ η was satisfied in the first step of the normal vector calculation, we use

the standard centered differences for all the partial derivatives in κ.

2. Otherwise, we take κ = ∇ · n. We calculate the partial derivatives of the components of n

using the same one-sided technique introduced in the normal vector calculation.

7.3 Gradients

The normal velocity in (33) requires ∇p on Σ. For our method, we must also calculate the gradients

in Ω. Let u be a function whose gradient we wish to calculate. For interior points, we use the

five-point stencil

ux(xi) =
1

12∆x

(
ui−2 − 8ui−1 + 8ui+1 − ui+2

)
+O (

∆x4
)

(81)

when {xi, xi±1, xi±2} ⊂ Ω = Ω ∪ Σ; when only {xi, xi±1} ⊂ Ω, we use the standard second-order

centered difference. If one of xi±1 ∈ Ω0, we construct a polynomial interpolation of u in Ω using

two-to-four nearby points in Ω, differentiate the interpolation, and evaluate at xi. In this way, we

can calculate ux to second-order or better accuracy at all points in Ω and on Σ. We obtain the

partial derivative uy similarly.

8 Extensions

In the level set method, we advect the interface Σ implicitly by advecting the level set function

ϕ. Consequently, we must extend the normal velocity off the interface to the node points in a

band surrounding Σ. By an extension velocity, we mean a function Ṽ defined on a larger domain

than that of V such that Ṽ
∣∣
Σ
≡ V . Beyond this requirement, there is considerable freedom in

choosing Ṽ . Before launching into the details of our technique, we outline our overall strategy and

the motivation for it.

27

Evaluating the velocity given in (33) both on and off Σ would give a natural extension veloc-

ity. However, as the pressure gradient (in the context of the interior Poisson problem) is only

defined in Ω and on Σ, this approach is not initially possible; consequently, our first step is to

extend the components of the gradient outside Σ. Once the gradient has been extended, we can

evaluate the velocity as in (33) wherever we wish.

However, this is not the most ideal extension. Because the velocity varies in the normal direc-

tion, it does not maintain the spacing between the level sets of ϕ, which adversely affects the

accuracy of ϕ. Therefore, we apply a PDE-based extension technique that enforces ∇V · n = 0

in a band around Σ [23]. This helps ensure the accuracy of the level set function, which in turn

improves the accuracy of the subcell resolution in the Poisson solver, the normal vectors, and the

curvature in the intermediate steps of the TVD-RK method.

One may be tempted to skip the gradient extension and simply define the velocity on Σ and in Ω

as in (33) and then extend with the PDE method. However, this gives innacurate and unstable

results, as there is not enough data about the interface to successfully define the spatial derivatives.

Once we have extended the velocity, we apply a Gaussian filter in a narrow band about the inter-

face. This allows us to remove high-frequency noise from the speed function that would otherwise

perturb the interface. Because this only smooths the data in a very thin band about the interface,

we must extend the smoothed velocity with the PDE technique one final time. We found this

technique to work best among the numerous combinations of extension and smoothing available.

8.1 Identifying the Closest Point on the Interface.

Ordinarily, it can be an expensive operation to determine the closest point x1 on the interface

Σ from a given point x0 [3, 26]. However, we can use the information afforded by the level set

function ϕ to make this a simple, efficient operation; no search is required.

At any point x0, the outward normal vector n (x0) points away from the interface, and |ϕ (x0)|
gives the distance to the interface. Therefore, the vector

W (x0) = − |ϕ (x0)|n (x0) = −ϕn (82)

points towards the closest point on Σ and has length equal to the distance from Σ. The point

x1 = x0 + W (83)

28

explicitly gives the closest point to x0 on Σ. See Figure 6.

r x0

r x1

¡
¡

¡
¡

¡
¡ª

W

@
@

@
@

@
@

r r

rr

xI

yJ

Σ

Figure 6: Finding the closest point on the interface.

8.2 Gradient Extension

Because the gradient algorithm only defines the gradient where ϕ ≤ ε, we must extend it to a band

of nodes where ϕ > ε. For stability, our technique must preserve information flow in an outward

direction from the interface. The method we describe can be used to extend any scalar function f

defined on Σ and in Ω, and we apply it to the components of ∇p individually.

Our approach for extending the function f to a point x is to interpolate f in a direction aligned

with the computational mesh. This allows the use of a high-order, one-dimensional interpolation,

which attains high accuracy without the complexity of multidimensional interpolation. We choose

the direction of the interpolation according to the vector W defined in the previous section.

We preserve information flow in the outward direction from the interface by successively updating

the points closest to the interface. We keep track of which points we need to update (with ex-

tended values of f) by introducing a temporary lattice U and a counter C of the number of points

remaining that require an update. As we extend f to points specified by U , we update U and the

counter C. We detail our approach to implement the scheme outside of Σ within a band of width

R below:

1. Create a temporary array U [i, j] of zeros, and set Ui,j = 1 if f has not been defined at (xi, yj)

and ϕ(xi, yj) ≤ R + ε. Set the counter C equal to the total number of points flagged for

extension, indicated by Ui,j > 0. This gives us a simple means of keeping track of which

points and how many require extension.

2. While C > 0, continue with the following steps:

29

3. Select among the remaining points indicated by U the point closest to Σ by choosing (I, J)

such that

ϕI,J = min {ϕi,j : Ui,j > 0.0} .

4. Define W = (Wx,Wy) according to (82).

5. We define integers mx,my that express the direction of W in terms of the indices of f . Define

mx according to

mx =

−1 if Wx < −ε

0 if |Wx| ≤ ε

1 if Wx > ε.

Define my similarly. For example, if W = (3,−2), then (mx,my) = (1,−1).

These integers, as modified in the following step, will allow us to express the points in the

interpolation as a single case, rather than several.

Note that if mx = my = 0, then f is already updated at (xi, yj), as W = 0 if and only

if ϕ(xi, yj) = 0. Accordingly, set UI,J = 0, reduce C by 1, and return to step 2 in such a

case. Otherwise, continue to step 6.

6. Choose the direction of the interpolation according to whether W is more horizontal than

vertical, more vertical than horizontal, or nearly diagonal. We do this by setting my = 0 if

|Wx| > |Wy|+ε (the direction towards the interface is mostly horizontal), by setting mx = 0 if

|Wy| > |Wx|+ ε (the direction towards the interface is mostly vertical), or by leaving mx and

my as they are if
∣∣∣|Wx| − |Wy|

∣∣∣ ≤ ε (the direction towards the interface is nearly diagonal).

7. Now that mx and my are defined, we can express the points along the direction of interpolation

with a single notation:

S =
{(

xI+mx , yJ+my

)
,
(
xI+2 mx , yJ+2 my

)
,

(
xI+3 mx , yJ+3 my

)
,
(
xI+4 mx , yJ+4 my

)}

=
{(

xI+k mx , yJ+k my

)}4

k=1
. (84)

We choose which points in the set S to use for interpolation (and hence the order of the

interpolation) so as to preserve information flow outward from the interface. Because we

have ordered our scheme to extend f in order of increasing ϕ, we can assume that points

30

where the level set function has lower values are already updated. Hence, we can attain the

desired information flow property by only using fI+k mx,J+k my in the interpolation if

ϕI+k mx,J+k my < ϕI+(k−1) mx,J+(k−1) my
,

that is, if
(
xI+k mx , yJ+k my

)

is closer to the interior of Ω than

(
xI+(k−1) mx

, yJ+(k−1) my

)
.

Evaluate the interpolation at (xI , yJ), set UI,J = 0, reduce the counter C by 1, and return

to step 2.

In our simulations, we apply this technique to each component of ∇p within a band of width

R = 5∆x.

8.3 Velocity Extension

Once we have a velocity defined in a band about the interface Σ, we apply an extension routine to

ensure that ∇Ṽ · n = 0. By [26, 28], we can attain this within a band of width R by evolving

Ṽτ + sign(ϕ)n · ∇Ṽ = 0, (85)

where τ is pseudo-time, sign(ϕ)n · ∇Ṽ is discretized according to the third-order or fifth-order

WENO scheme, and n is discretized as above.

As was the case with the level set initialization, the orthogonality property ∇Ṽ · n = 0 becomes

true first near the zero level set and advects outward, so if we only require Ṽ within a distance R

of Σ, we evolve (85) until τ = R.

8.4 An Alternative Velocity Extension Technique

Although we do not use the following method, we note that the vector W defined in (82) suggests

an alternative extension technique. In that technique, if we wish to extend V to x0, we define W

as in (82) and

x1 = x0 + W (86)

31

to be the closest point to x0 on the interface. Next, we located (xI , yJ) such that x0 is contained

in the box [xI , xI+1)× [yJ , yJ+1) and calculate V (x1) by interpolating V at the corners of the box

with bilinear interpolation. Lastly, we define Ṽ (x0) = V (x1). Notice that as Ṽ is constant along

W ‖ −n at all extended points,
∂Ṽ

∂n
≡ 0,

that is, ∇Ṽ · n = 0.

This approach differs from the discrete, fast marching velocity extension given in [3] in several

ways. First, the fast marching extension technique as presented in [3] extends the velocity outward

from the interface while simultaneously updating the level set function; ours uses an already-

updated level set function to aid in the extension process. We can make use of the level set

function to readily locate the closest position on the interface and direction of interpolation, while

the fast marching technique depends on explicitly reconstructing the zero level set as piecewise

linear curves and considering multiple cases. Also, while the fast marching method depends upon

solving a discretized PDE at every point of extension, ours depends upon a simpler interpolation

of previously known values in a way similar to [20].

We found this alternative technique to be second-order, but we chose not to use it because it

was not always stable.

9 Other Optimizations, Improvements, and Considerations

9.1 Gaussian Smoothing

Because the normal velocity is based (in part) upon the extended gradients of a second-order

accurate pressure solution, the speed can develop numerical noise when even small perturbations

in the level set function ϕ are present. Consequently, some smoothing to rid the data of this noise

seems to be necessary. We found that it was not necessary to smooth any other quantities. As

in image processing, we smooth the normal velocity by applying a Gaussian filter. The Gaussian

filter is well-suited to this application because:

1. its kernel is separable, meaning that the data can be smoothed one dimension at a time for

greater efficiency; and

2. its frequency response is greatest at high spatial frequencies and is monotone decreasing

for lower spatial frequencies, meaning that it smooths high-frequency noise while preserving

32

lower-frequency details, and its response is predictable.

In one spatial dimension, a Gaussian filter is applied to a function f by

f̂I =
1

σ
√

2π

∑

i

fI−i exp
(
− (i ∆x)2

2σ2

)
∆x, (87)

where σ is the standard deviation of the filter. Typically, σ = N∆x for some integer N . For

|i∆x| ≥ 3N∆x, the exponential function in the convolution has a very small value (less than

approximately .0111); consequently, we can truncate the sum above to

f̂I =
1
A

1
N
√

2π

3N∑

i=−3N

fI−i exp

(
−1

2

(
i

N

)2
)

, (88)

where A is the value of the sum for f ≡ 1.

To smooth a two-dimensional data-set, we use (88) first in the x-direction, and then again in

the y-direction. In our calculations, we use σ = 2∆x. Because the filter requires that f be defined

within a distance of 3σ, we only apply the filter to a narrow band around Σ. In our simulations,

we use a narrow band of width 3∆x.

9.2 Width of the Band for the Narrow Band Technique and Size of the

Computational Domain

Now that we have outlined our numerical techniques, we revisit the narrow band method and de-

termine the width of the band. We start by considering the smoothed normal velocity.

We require a smoothed normal velocity within three nodes of the interface. Thus, R ≥ 3∆x.

If σ is the standard deviation of the Gaussian filter for the smoothing, then the outermost of these

smoothed points requires that Ṽ be defined within a rectangle that extends 3σ in all four (mesh) di-

rections. The farthest node point within this rectangle is at a distance of 3
√

2σ, so R ≥ 3∆x+3σ
√

2.

To extend the velocity to the outermost of these points, we require a valid normal vector. As

we obtain the normal vector with centered difference of ϕ, this requires one-to-two additional node

points. Thus, R ≥ 3∆x + 3
√

2σ + 2∆x. Lastly, we often multiply R by a safety factor because

the interface tends to change position between intermediate steps of the TVD-RK method. In our

calculations, we chose a safety factor of 1.25. Thus, our band size is

R = 1.25
(
5∆x + 3

√
2σ

)
= R = 1.25

(
5∆x + 6

√
2
)
∆x, (89)

33

where we have used σ = 2∆x.

The size of the band for the narrow band level set method determines the size of the compu-

tational domain [a, b] × [c, d]: it must be large enough to contain the contour {x : ϕ(x) ≤ R + ε}.
We typically allow three-to-four additional nodes of buffer between the edge of the computational

domain and this contour. Thus, whenever

|ϕ(x)| > R + 3∆x, (90)

for any x ∈ ∂ ([a, b]× [c, d]), we must extend the computational domain. We therefore modify the

width R of the narrow band to include this distance (so that we can accurately gauge proximity

to the computational boundary in (90)):

R = 1.25
(
5∆x + 3

√
2σ + 3∆x

)
= R = 1.25

(
8∆x + 6

√
2
)
∆x, (91)

where we have used σ = 2∆x.

9.3 Storage of Large Banded Matrices

The Poisson solver requires that we store relatively large, sparse banded coefficient matrices. This

can be accomplished in a compact, memory-saving manner as presented in [25].

Suppose for an n × n matrix M that mi,j = 0 for all j > i + u and all i > j + `. Then M

has lower bandwidth (at most) ` and upper bandwidth (at most) u.2 We store the nonzero entries

of M as an n× (` + u + 1) matrix E as follows:

En,k = mn,`+1+(k−n). (92)

For example, the matrix

M =

3 1

4 1 5

9 2 6 5

3 5 8 9

7 9 3 2

3 8 4 6

2 4 4

2In our problem, if we solve the Poisson system (57) on an N ×N discretization with a row or column ordering,

then the upper and lower bandwidth are 3(N − 2).

34

is stored as

E =

¤ ¤ 3 1

¤ 4 1 5

9 2 6 5

3 5 8 9

7 9 3 2

3 8 4 6

2 4 4 ¤

.

The elements indicated by ¤ have no data associated with M ; they could be used to store the

upper and lower bandwidths of M , for example. In our implementation, we opt instead to include

E as a data member of a C++ banded matrix class which also stores information on the size and

bandwidths of the original matrix as well as useful member functions. (e.g., efficient matrix-vector

multiplication, as presented in the next section, linear solvers, etc.)

Because these matrices are often non-symmetric but positive-definite, we use an optimized bicon-

jugate gradient method to solve the linear systems resulting from the concentration and pressure

solvers. Under certain conditions related to pivoting, the biconjugate gradient method fails when a

coefficient experiences numerical blowup [12]. In such cases, we use a Gaussian elimination method

with partial pivoting that has been optimized for our banded matrix storage scheme; the banded

Gaussian elimination details can be found in [25]. In future work, we will further address this

problem by modifying the Bi-Lanczos formulation of the LU decomposition that is the basis of the

method or by using the QMR approach [12].

9.4 Optimized Banded Matrix-Vector Multiplication

Because the matrix-vector product is central to the biconjugate gradient method, we developed an

algorithm to optimize that product. Suppose an n×n matrix M is banded with upper bandwidth

u and lower bandwidth `, and suppose we want the k-th entry of w = Mv, where v is n× 1. Then

wk =
k+u∑

j=k−`

Mk,jvj .

Suppose, however, that only several of the entries Mk,j in the sum are nonzero. Then many of the

operations are wasted, and in machine-precision arithmetic, the zero terms in the sum will con-

tribute additional error to the final result. We therefore seek to minimize the wasted computation,

which will also increase the accuracy of the result.

35

We attain this optimization in several steps. For the matrix M , we store two additional ar-

rays B and L of length ` + u + 1, which we initialize to all zeros. As we construct the matrix

M , whenever we make a non-zero entry in a particular band in the storage matrix for M , we set

the corresponding value in B equal to 1. In this way, we obtain a representation of which bands

contain nonzero elements in the matrix.

Once we have completely constructed the matrix M , we compile a list of nonzero bands and

keep a count N of the number of nonzero bands. We do this by filling L with the column numbers

of B which correspond to nonzero bands in ascending order. For example, for the matrix

1 1 0 0 1

0 1 0 0 0 1

0 0 1 0 0 0 0

0 0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 0

0 0 1 0

1 0 1

,

the lower bandwidth is 2, the upper bandwidth is 4,

B =
[
1 0 1 1 0 0 1

]
,

N = 4, and

L =
[
1 3 4 7 0 0 0

]
.

Then for each entry in the matrix-vector product, we truncate the sum to the indicies designated

by the first N members of L. This technique only requires the storage of two additional one-

dimensional arrays that are small relative to the size of the original matrix M . The setup adds

little computational cost because B is constructed as the matrix M and its storage representation

are created, and L is constructed only one time.

10 Convergence and Validation Results

We now give convergence results and validate the scheme against known solutions. We shall

measure the error in an approximation uapprox of u by

max |uapprox(xi)− u(xi)| , (93)

36

where xi ranges over all the nodes of a fixed region.

We define the order of convergence by

order =
log

(
error1
error2

)

log
(

mesh size 1
mesh size 2

) . (94)

10.1 Level Set Reinitialization and Curvature

We reintialize the level set function for a circle of radius 2, whose exact level set representation is

given by

ϕ(x, y) =
√

x2 + y2 − 2, (95)

using both the third-order and fifth-order WENO schemes. Our calculations here and throughout

shall use the third-order TVD-RK time discretization. Because there is a singularity in ϕ at x = 0,

we shall measure the maximum absolute error in the band 1.5 < r < 2.5, where r =
√

x2 + y2.

Both discretizations converge as expected. See Table 1.

mesh WENO3 WENO5

51× 51 7.97 e-4 5.72 e-6

101× 101 7.14 e-5 1.72 e-7

201× 201 7.31 e-6 9.66 e-9

overall order 3.38 4.60

Table 1: Absolute error in ϕ after reinitialization.

The accuracy and stability of the level set function are essential for properly calculating variables

that are sensitive to numerical noise in the level set function. We illustrate this by computing the

curvature in the band 1.5 < r < 2.5, where the exact solution should be 1
r ; the results are shown in

Table 2. Both reinitialization techniques yield curvatures that converge just under second-order,

but the fifth-order WENO scheme comes closer to the convergence attained by using the exact level

set function, and the error is a full order of magnitude less. As we shall see in the next section,

the magnitude and order of the error in the level set function and curvature greatly impact on the

convergence of the pressure solution.

37

mesh exact ϕ WENO3 WENO5

51× 51 .00155 .0154 .00145

101× 101 4.55 e-4 .00493 4.51 e-4

201× 201 1.14 e-4 .00127 1.14 e-4

overall order 1.88 1.80 1.83

Table 2: Absolute error in κ after level set reinitialization.

10.2 Poisson Solver

Example 1: We examine the sample concentration problem

∇2u = u x ∈ Ω

u = 1 x ∈ Σ

u = 1 x ∈ Ω0,

(96)

where Σ is a circle of radius 2 in two dimensions. The exact solution is

u =

I0

(√
x2+y2

)

I0(2)
x ∈ Ω

1 x ∈ Σ

1 x ∈ Ω0.

(97)

We solve on the computational domain [−4, 4]× [−4, 4] with the exact level set function in (95) and

with the same level set function that has been reinitialized with the third- and fifth-order WENO

schemes. The numerical error (measured as the maximum absolute error over the computational

mesh) is given in Table 3.

We see that the Poisson solver converges to approximately second-order with all three meth-

mesh exact ϕ WENO3 WENO5

51× 51 4.63 e-4 5.30 e-4 4.64 e-4

101× 101 1.21 e-4 1.25 e-4 1.21 e-4

201× 201 3.05 e-5 3.08 e-4 3.05 e-5

overall order 1.96 2.06 1.96

Table 3: Absolute error in u for the Poisson solver in Example 1.

ods, although the fifth-order WENO scheme yields smaller errors for coarser meshes.

38

Example 2: We examine the sample pressure problem

∇2u = 0 x ∈ Ω

u = κ− 5
2 |x|2 x ∈ Σ

u = 0 x ∈ Ω0,

(98)

where Σ is a circle of radius 2 in two dimensions. The exact solution is

u =

−9.5 x ∈ Ω

−9.5 x ∈ Σ

0 x ∈ Ω0.

(99)

As before, we solve on the computational domain [−4, 4] × [−4, 4] and with the exact and reini-

tialized level set function in (95). The numerical error (measured as the maximum absolute error

over the computational mesh) is given in Table 4.

mesh exact ϕ WENO3 WENO5

51× 51 7.05 e-4 .00575 6.60 e-4

101× 101 2.00 e-4 .00493 2.00 e-4

201× 201 5.00 e-5 .00127 5.00 e-5

overall order 1.91 1.09 1.86

Table 4: Absolute error in u for the Poisson solver in Example 2.

We see that the Poisson solver converges to approximately second-order with an exact level set

function; this is the order of the method. However, when we use the third- and fifth-order WENO

schemes for the level set reinitialization, we see the importance of having an accurate level set

function; switching the WENO method from third- to fifth-order improves the convergence of the

Poisson solver from first-order to second-order in this example. The main difference between this

and the previous example is that the boundary condition is based on curvature, which depends on

two derivatives of ϕ. As such, the solution is very sensitive to error in the level set function; error

in ϕ has the greatest impact on the interpolation of the boundary condition.

10.3 Gradients

Example 1: Let us return to the sample concentration problem. Inside and up to Σ, we have

∇u =
I1(r)
I0(2)

x
r
. (100)

39

Let us examine the error in ux for the same mesh sizes as before. We test where 1.5 < r < 2.0.

The results are given in Table 5. The errors for the exact level set function ϕ demonstrate the

mesh exact ϕ WENO3 WENO5

51× 51 .00155 .00503 .0049

101× 101 7.54 e-4 8.6 e-4 7.54 e-4

201× 201 1.24 e-4 1.37 e-4 1.24 e-4

overall order 1.82 2.60 2.65

Table 5: Absolute error in ux for the Poisson solver in Example 1.

method to converge to just under second order. The errors calculated for the reinitialized level

set functions show higher orders of convergence because the error at low resolutions is so large.

We can see in these examples, however, that the fifth-order WENO method for the reinitialization

gives the results closest to those corresponding to an exact level set function.

Example 2: Let us now turn to the sample pressure problem. Inside and up to Σ, we have

∇u = 0. Note that this example is relevant to the normal velocity calculation. We examine the

error in ux for the same mesh sizes and node points as before. The results are given in Table

6. Again, the fifth-order WENO method gives much better results than the third-order WENO

method; the level set that was reinitialized with the third-order WENO method converged under

first order, whereas the fifth-order method yielded second-order gradients.

mesh exact ϕ WENO3 WENO5

51× 51 .00489 .241 .00393

101× 101 4.04 e-4 .156 9.53 e-4

201× 201 9.57 e-5 .0875 2.22 e-4

overall order 2.84 .73 2.07

Table 6: Absolute error in ux for the Poisson solver in Example 2.

10.4 Speed Extension

We now test the speed extension. As before, we test on the computational domain [−4, 4]× [−4, 4]

with 51× 51, 101× 101, and 201× 201 mesh sizes. We shall use the exact level set function ϕ and

the reinitialized level set functions using the third- and fifth-order WENO methods.

40

mesh exact ϕ WENO3 WENO5

51× 51 .00119 6.24 e-4 .00119

101× 101 2.91 e-4 2.52 e-4 2.91 e-4

201× 201 7.26 e-5 7.03 e-5 7.26 e-5

overall order 2.02 1.57 2.02

Table 7: Absolute error in velocity extension without Gaussian smoothing.

mesh exact ϕ WENO3 WENO5

51× 51 .00104 5.57 e-4 .00103

101× 101 2.15 e-4 1.86 e-4 2.15 e-4

201× 201 7.12 e-5 6.91 e-5 7.12 e-12

overall order 1.93 1.51 1.93

Table 8: Absolute error in velocity extension with Gaussian smoothing.

We test the extension of a sample velocity defined by

V = −n · x

Hence, the extended speed should be V ≡ −r with V
∣∣
Σ
≡ −2. We shall extend the components

of x to a distance of 5∆x, follow with the PDE-based normal velocity extension, and check the

absolute error on 1.5 < r < 2.5. The results without Gaussian smoothing are given in Table 7.

The results with Gaussian smoothing are given in Table 8. The velocity extension technique is

second-order both with and without Gaussian smoothing when used with the fifth-order WENO

method, whereas the third-order WENO method gives sub-second-order convergence. The Gaus-

sian smoothing reduces the magnitude of the error somewhat while having little impact on the

order of convergence. Its larger impact is in eliminating spurious variations in the velocity that

can lead to undue perturbations in the level set function. If such variations are not reduced, a

feedback cycle ensues: the spurious variations in the velocity perturb the level set function, causing

large pointwise errors in the curvature and consequently in the pressure gradient and velocity. The

large errors in the velocity further perturb the level set function. This also creates a prohibitive

time-step restriction by the CFL condition and reduces the computational speed of a simulation.

41

10.5 Convergence of Overall Scheme

We now test the convergence of the overall scheme. We start with an unperturbed circle of radius

2.0 and advect it to t = 0.25 according to (32)-(33) with A = .5, G = 20, GN = 1, N = 0 (no

necrosis), and no chemotherapy. According to [10], the exact solution in this case is given by

R′(t) = −AG
R

d
+ G

I1(R)
I0(R)

. (101)

Solving (101) to t = .25, we find that R25 = R(.25) ≈ 2.74749026506514. Thus, at t = .25, the

exact level set function should be given by

ϕ(x, y) =
√

x2 + y2 −R25. (102)

We use the fifth-order WENO method and third-order TVD-Runge Kutta, and we test the max-

imum absolute error in ϕ within the band 1.5 < r < 2.5. The results given in Table 9 indicate

second-order convergence for the overall scheme.

mesh Error for WENO5

51× 51 .0238

101× 101 .00674

201× 201 .00136

overall order 2.06

Table 9: Absolute error in ϕ at t = 0.25.

10.6 Comparison with Known Results

We now test the scheme against the results given by a spectrally accurate boundary integral method

in [10]. We use A = 0.5, G = 20, N = 0. The initial interface is a circle of radius 2 perturbed as

Σ(s) = (2 + .2 cos(2s), 2 + .2 sin(2s)) , 0 ≤ s ≤ 2π. (103)

We use ∆x = ∆y = .08 with fifth-order WENO and third-order TVD-Runge Kutta. We plot the

two solutions at t = 1.0, t = 1.92, and t = 2.5 in Figure 7; we also plot our solution at t = 3.0,

t = 3.9, and t = 5 to demonstrate that our method continues beyond morphological changes such as

the capture of healthy tissue. The dashed solution is that given by the boundary integral technique

in [10], and the solid is that given by the finite difference techniques presented here. As we can

see, there is good agreement between the two techniques. A full animation of this simulation will

be available at http://www.ima.umn.edu/~macklin/Tumor.html.

42

Figure 7: Comparison of computed solutions: We compare our solutions at t = 1.0, t = 1.92, and

2.50 to results from a spectrally-accurate boundary integral method in [10], indicated by the dashed

curves. We also plot our solution at t = 3.0, t = 3.9, and t = 5.0; because the boundary integral

method cannot continue beyond pinchoff, there are no results for comparison at these times.

11 Preliminary Results and Discussion

11.1 A Parameter Study on GN

In this study, we hold A = 0, G = 20, and N = .35. We vary the value of GN with values

GN = .1, GN = 1, GN = 10, (104)

and we conduct one baseline simulation with no necrosis (N = 0).

All simulations begin with the curve given in (103). The simulation for N = 0 was done with

∆x = ∆y = .16. The simulations with GN = .1, GN = 1, and GN = 10 used ∆x = ∆y = .1067.

As was analyzed in [10], with N = 0, A = 0, G = 20, we are in the moderate vascularization

parameter regime (A ≤ 0 and G > 0). In this regime, tumor growth is rapid and unbounded, and

43

perturbations decay to zero for two-dimensional growth [10]. We observe this in our simulations

as well. For small GN (GN = 0.1), we observe that necrosis has a stabilizing effect on growth:

the tumor volume is smaller than for a nonnecrotic tumor at any given time, and perturbations

show no appreciable growth. However, for larger values of GN (1.0 and 10.0), we see that while the

necrosis further shrinks the overall size of the tumor, the morphology has been greatly destabilized,

and perturbations grow rapidly. This can been seen in a plot of the four simulations at t = 0.5

in Figure 8. We shall use the view [−12, 12] × [−12, 12] in all our plots for better comparison of

relative sizes. The dark regions denote ΩN .

−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=0.50, chemotherapy inactive

−10 −5 0 5 10

−10

−5

0

5

10

x

y

t=0.50, chemotherapy inactive

−10 −5 0 5 10

−10

−5

0

5

10

x

y

t=0.50, chemotherapy inactive

−10 −5 0 5 10

−10

−5

0

5

10

x

y

t=0.50, chemotherapy inactive

Figure 8: A Parameter Study on GN : We plot (from left to right, starting at the top) for N = 0

(no necrosis), GN = .1, GN = 1, and GN = 10 at t = 0.5.

11.2 A Parameter Study on GN with Chemotherapy

We now conduct the same parameter study while applying a chemotherapy regimen. We alternate

A between 0 and .5 in .15 increments, starting with A = 0 at t = 0.

We note when A = .5, the tumor is in the low vascularization parameter regime in [10]. In

44

this case, perturbations often tend to grow with time (the behavior depends upon the mode of the

perturbation and the radius of the underlying unperturbed tumor) [10]. In our simulation with no

necrosis, the tumor demonstrates shape instabilities that grow during the chemotherapy sessions

and shrink between those sessions. The tumor demonstrates significant shape instability by the

end of the fourth chemotherapy session (t = 1.19); by the seventh session (t = 2.04), the shape

instabilities are quite complex. See Figure 9.

−10 −5 0 5 10

−10

−5

0

5

10

x

y

t=2.04, chemotherapy ACTIVE

Figure 9: Complex shape instability for a non-necrotic tumor undergoing chemotherapy at t = 2.04.

With necrosis and a small value for GN (GN = .1), the shape instabilities are greatly reduced, as

can be seen at the end of the second and fourth chemotherapy sessions. With larger values for

GN , however, the development of these shape instabilities is accelerated during the chemotherapy

sessions. See Figure 10, where we plot the four simulations at the end of the second chemotherapy

session, just before the third session, and at the end of the fourth session. These results demon-

strate that the outcome of a given chemotherapy regimen is greatly dependent upon the physical

characteristics of the tumor to which it is applied; a chemotherapy session that is effective against

one tumor may cause undesirable behavior when applied to another tumor (e.g., invasive fingering,

the capture of healthy tissue, or tumor breakup). This suggests that for a given tumor, great care

must be taken in selecting a chemotherapy regimen, and some optimization may be possible. We

shall give an example of a chemotherapy regimen that leads to tumor breakup.

45

11.3 Breakup of Tumor Undergoing Chemotherapy

We give an example of a chemotherapy regimen that causes a tumor to break up into multiple,

smaller tumors. We use ∆x = ∆y = .16 with A0 = 0, G = 20, no necrosis, and with the initial

curve given in (103). Our chemotherapy regimen is given in Figure 11.

In our simulation, the tumor begins to break up during the last chemotherapy session. The first

breakup occurs at t = 3.35, and five additional breakups occur at 3.4, 3.43 (two breakups), 3.44,

and 3.5. After the chemotherapy session is over, each separate tumor mass begins to grow. We

give some plots from the evolution of this tumor in Figure 12.

12 Future Work

In future work, we will improve our model for tumor growth. In captured healthy regions ΩC , we

currently set c = 1 and p = 0 and p = κ on Σi. This implies an external source of nutrient supply

for the captured regions (e.g., such as being fed from above). In an improved model, nutrient

reaches ΩC solely by diffusion through Ω. In such a model, we have

∇2c = 0 in ΩC (105)

with c continuous and smooth across Σi.

Similarly, our current implementation does not enforce ∇ · u = ∇2p = 0 in ΩC . We could im-

prove the model by setting ∇2p = 0 in ΩC and applying a jump boundary condition to the interior

boundary:

[p]
∣∣∣
Σi

= 0. (106)

We could also improve our model for chemotherapy. During each chemotherapy session, the level

of A remains constant. Thus, the administered treatment is just as effective in increasing the

death rate of the tumor cells at the beginning of the session as at the end. However, tumors

often develop a resistance to treatment, so A should decay over time as the treatment loses its full

effectiveness. Lastly, we plan to include new physiological effects in the model, such as angiogenesis.

In future work we will also strive to improve efficiency and extend capabilities. We shall optimize

the Poisson solver and reduce memory use. We will also extend the methods to three dimensions

and incorporate adaptive Cartesian meshes for improved resolution at lower computational cost.

46

References

[1] Table 32 in Health, United States, 2002, published by National Center for Health Statistics /

Center for Disease Control (2002).

[2] On growth and Form: Spatio-temporal pattern formation in Biology, Ed. M.A.J. Chaplain,

G.D. Singh, J.C. MacLachlan, Wiley Series in Mathematical and Computational Biology,

New York, NY (1999).

[3] D. Adalsteinsson and J.A. Sethian, The Fast Construction of Extension Velocities in Level

Set Methods, Journal of Computational Physics, Vol. 148, Issue 1 (1999), pp. 2-22.

[4] T. Aslam, R.P. Fedkiw, B. Merriman, and S. Osher, A Non-Oscillatory Eulerian Approach

to Interfaces in Multimaterial Flows (the Ghost Fluid Method), Journal of Computational

Phyics, Vol. 152, Issue 2 (1999), pp. 457-492.

[5] H.M. Byrne, In: A Survey of Models on Tumor Immune Systems Dynamics, ed. J. Adam

and N. Bellomo, Birkhauser, Boston (1996), pp. 15-87.

[6] H.M. Byrne and M.A.J. Chaplain, Modelling the Role of Cell-Cell Adhesion in the Growth and

Development of Carcinomas, Mathematical and Computer Modelling, Vol. 24 (1996), pp. 1-17.

[7] R. Caflisch, R. Fedkiw, F. Gibou, and S. Osher, A Level Set Approach for the Numerical

Simulation of Dendritic Growth, preprint (2002).

[8] L.T. Cheng, R. Fedkiw, F. Gibou, and M. Kang, A Second Order Accurate Symmetric

Discretization of the Poisson Equation on Irregular Domains, Journal of Computational

Physics, Vol. 176, Issue 1 (2002), pp. 205ff.

[9] S. Chen, B. Merriman, S. Osher, and P. Smereka, A Simple Level Set Method for Solving

Stefan Problems, Journal of Computational Physics, Vol. 135, Issue 1 (1997), pp. 8-29.

47

[10] V. Cristini, J.S. Lowengrub, and Q. Nie, Nonlinear Simulation of Tumor Growth, Journal of

Mathematical Biology, Vol. 46, No. 3 (2003), pp. 191-224.

[11] V. Cristini, J.S. Lowengrub, and Q. Nie, Tumor Growth in Silico and its Experimental

Validation, preprint (2003).

[12] J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. van der Vorst, Numerical Linear Algebra

for High-Performance Computers, Philadelphia, PA (1998), ISBN 0-89871-428-1

[13] R.P. Fedkiw, X.D. Liu, and M. Kang, A Boundary Condition Capturing Method for Poisson’s

Equation on Irregular Domains, Journal of Computatoinal Fluid Mechanics, Vol. 160, Issue 1

(2000), pp. 151-178.

[14] L.L. Feng, C.W. Shu, M. Zhang, A Hybrid Cosmological Hydrodynamic/N-Body Code Based

on the Weighted Essentially Non-Oscillatory Scheme, Proceeding of 5th Sino-Germany

Workshop on Cosmology and Galaxy Formation (2002)

[15] S. Gottlieb and C.W. Shu, Total Variation Diminishing Runge-Kutta Schemes, Mathematics

of Computation, 67 (221), pp. 73-85

[16] S. Gottlieb, C.W. Shu, and E. Tadmor, Strong Stability-Preserving High-Order Time Dis-

cretization Methods, SIAM Review, Vol. 43, No. 1 (2001), pp. 89-112

[17] H.P. Greenspan, On the Growth and Stability of Cell Cultures and Solid Tumors, Journal of

Theoretical Biology, Vol. 56 (1976), pp. 229-242.

[18] G.S. Jiang and D. Peng, Weighted ENO Schemes for Multi-Dimensional Hamilton-Jacobi

Equations, SIAM Journal of Scientific Computation, Vol. 21, No. 6 (2000), pp. 2126-2143

48

[19] G.S. Jiang and C.W. Shu, Efficient Implementation of Weighted ENO Schemes, Journal of

Computational Physics, Vol. 126, No. 2 (1996), pp. 202-228

[20] R. Malladi, J.A. Sethian, and B.C. Vemuri, Shape Modeling with Front Propagation: A Level

Set Approach, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 17, No. 2 (1995).

[21] D. Peng, B. Merriman, S. Osher, H.K. Zhao, and M. Kang, A PDE-Based fast local level set

method, Journal of Computational Physics, Vol. 155 (1999), pp. 410ff.

[22] M. Sussman, E. Fatemi, P. Smereka, and S. Osher, An Improved Level Set Method for

Incompressible Two-Phase Flows, Computers and Fluids, Vol. 27, No. 5-6 (1998), pp. 663-680.

[23] H. Zhao, T. Chan, B. Merriman, and S. Osher, A variational level set approach to multiphase

motion, Journal of Computational Physics, Vol. 127 (1996), pp. 179ff.

[24] D.L.S. McElwain and L.E. Morris, Apoptosis as a Volume Loss Mechanism in Mathematical

Models of Solid Tumor Growth, Mathematical Biosciences, Vol. 39 (1978), pp. 147-157.

[25] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C: The

Art of Scientific Computing, 2nd Ed., Cambridge University Press, 1992. ISBN 0-521-43108-5

[26] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press,

New York, NY (1999). ISBN 0-521-64557-3

[27] Sussman, Mark and E. Fatemi, An Efficient, Interface Preserving Level Set Re-Distancing

Algorithm and its Application to Interfacial Incompressible Fluid Flow, SIAM Journal on

Scientific Computing, Vol. 20, No. 4 (1999), pp. 1165-1191.

49

[28] H. Zhao, T. Chen, B. Merriman, and S. Osher, A Variational Level Set Approach to

Multiphase Motion, Journal of Computational Physics, Vol. 127, No. 1 (1996), pp. 179ff.

50

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=0.59, chemotherapy ACTIVE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=0.74, chemotherapy inactive

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=1.19, chemotherapy ACTIVE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=0.59, chemotherapy ACTIVE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=0.74, chemotherapy inactive

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=1.19, chemotherapy ACTIVE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=0.59, chemotherapy ACTIVE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=0.74, chemotherapy inactive

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=1.19, chemotherapy ACTIVE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=0.59, chemotherapy ACTIVE

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=0.74, chemotherapy inactive

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

x

y

t=1.19, chemotherapy ACTIVE

Figure 10: A Parameter Study on GN with Chemotherapy: We plot for N = 0 (top row), GN = .1

(second row), GN = 1 (third row), and GN = 10 (fourth row) at t = 0.59, t = 0.74, and t = 1.19

(from left to right).
51

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Chemotherapy Regimen

t

A

Figure 11: Chemotherapy regimen

52

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=2.50, chemotherapy ACTIVE

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=2.55, chemotherapy ACTIVE

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=3.00, chemotherapy ACTIVE

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=3.35, chemotherapy ACTIVE

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=3.40, chemotherapy ACTIVE

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=3.43, chemotherapy ACTIVE

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=3.44, chemotherapy ACTIVE

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=3.50, chemotherapy inactive

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x

y

t=3.55, chemotherapy inactive

Figure 12: Breakup of a Tumor undergoing Chemotherapy: We plot (left to right from the top) at

t = 2.5, t = 2.55, t = 3.0, t = 3.35, t = 3.4, t = 3.43, t = 3.44, t = 3.5, and t = 3.55.

53

