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Abstract
Despite major scientific, medical and technological advances over the last few
decades, a cure for cancer remains elusive. The disease initiation is complex,
and including initiation and avascular growth, onset of hypoxia and acidosis due
to accumulation of cells beyond normal physiological conditions, inducement
of angiogenesis from the surrounding vasculature, tumour vascularization and
further growth, and invasion of surrounding tissue and metastasis. Although
the focus historically has been to study these events through experimental
and clinical observations, mathematical modelling and simulation that enable
analysis at multiple time and spatial scales have also complemented these
efforts. Here, we provide an overview of this multiscale modelling focusing on
the growth phase of tumours and bypassing the initial stage of tumourigenesis.
While we briefly review discrete modelling, our focus is on the continuum
approach. We limit the scope further by considering models of tumour
progression that do not distinguish tumour cells by their age. We also do not
consider immune system interactions nor do we describe models of therapy. We
do discuss hybrid-modelling frameworks, where the tumour tissue is modelled
using both discrete (cell-scale) and continuum (tumour-scale) elements, thus
connecting the micrometre to the centimetre tumour scale. We review recent
examples that incorporate experimental data into model parameters. We show
that recent mathematical modelling predicts that transport limitations of cell
nutrients, oxygen and growth factors may result in cell death that leads to
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morphological instability, providing a mechanism for invasion via tumour
fingering and fragmentation. These conditions induce selection pressure for
cell survivability, and may lead to additional genetic mutations. Mathematical
modelling further shows that parameters that control the tumour mass shape
also control its ability to invade. Thus, tumour morphology may serve as a
predictor of invasiveness and treatment prognosis.

Mathematics Subject Classification: 92-02, 92-08, 92C05, 92C17, 92C50,
65M06, 65M55

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In a healthy body, cells control their proliferation and programmed cell death (apoptosis)
in the various tissues so as to optimize body repair and healing. In cancer, this carefully
regulated mechanism breaks down; cells proliferate or refrain from dying, may change the
microenvironment to favour their survival and may migrate and metastasize in regions far
from the primary tumour. This process eventually may kill the host body due to physical
obstruction or organ malfunction. Normal cell behaviour is carefully orchestrated through
expression of genes within cells and regulatory networks; in cancer, genes that promote
proliferation (oncogenes) as well as apoptosis (tumour suppressor genes) may malfunction, and
regulatory signals may be ignored. Within an abnormal cell population, additional mutations
and epigenetic changes may further lead to different subgroups of cells (‘clones’) that differ
in their characteristics. As cells accumulate to form microscopic nodules without access
to the vascular network, they receive nutrients and growth factors via diffusion through the
neighbouring host (healthy) tissue. Consequently, these nodules typically remain small and
grow at most to a few millimetres in diameter.

The accumulation of tumour cells may cause acute and chronic lack of oxygen (leading
to hypoxia) and nutrient (e.g., glucose, leading to hypoglycaemia) as well as accretion of
metabolites (e.g., lactic acid, leading to acidosis) [226, 257, 265, 532, 550]. As tumour cells
accumulate, the insufficiency of the existing vasculature to deliver oxygen and nutrients to all
the cells present may induce neovascularization. Cells under stressful conditions will release
pro-angiogenic growth factors to drive angiogenesis—the process by which existing blood
vessels are stimulated to grow from the main circulatory system to feed tissue with blood,
similar to what normally occurs during wound healing. This provides the tumour with a
direct supply of nutrients and growth-promoting factors. Once a tumour is vascularized, it
can grow larger and even shed cells into the vessels, leading to satellite tumours in distant
parts of the body (metastases). Metastasis is the predominant cause of mortality due to
cancer. By the time a tumour reaches a clinically detectable size, it is usually in the
vascular growth phase. Thus, the transition to metastasis and malignancy typically starts with
angiogenesis.

Hypoxia, hypoglycaemia and acidosis are exacerbated by the tumour-induced
microvasculature, which, unlike the normal wound healing vasculature tends to be highly
disorganized and poorly functioning [258, 291], resulting in considerable heterogeneity
in oxygen and nutrient delivery and metabolite removal [289, 290]. These conditions
correlate with poor clinical outcome and increased risk of cancer spread through the body
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[75, 76, 263, 264, 504], may select for apoptosis-resistant tumour cells [246], induce further
blood vessel formation [185, 257, 481], and increase invasiveness [99, 151, 226, 282, 423, 454,
455, 567, 568].

Cell–cell adhesion and communication enable collective, contractile motion by large,
multicellular aggregates that move as a functional unit. Collective cell migration dominates
in tumours of highly differentiated tissues (e.g. lobular breast cancer and epithelial prostate
cancer [56, 72, 83, 401], where invasion by individual cancer cells is rarely detected [198, 425].
It is generally observed [198] that pre-metastatic phenotypic transitions (e.g. epithelial–
mesenchymal transitions, which turn an attached epithelial cell into a motile mesenchymal
cell) follow a collective-migration stage and are regulated by the environment (e.g. local
hypoxia) [483, 529]. Collective migration has numerous advantages, including high autocrine
pro-migratory and protease concentrations and protection of inner cells from immunological
defenses. In addition, highly migratory cells at the periphery can promote invasion by less
motile but more death-resistant clones. This organized, structured motion of a whole cluster
of cells that emerges from the forces and mechanisms that regulate individual cell motion
and synchronization suggests that there is more to a tumour than the sum of its parts. In
pre-metastatic, locally invasive tumours, collective cell migration in protruding sheets, strands
and detached clusters (e.g., pre-metastatic, locally-invasive epithelial tumours) relies mostly
on cell–cell and cell–matrix adhesion, cell–cell communications, and the controlled release of
matrix-degrading enzymes [196, 198, 425, 461]. The latter degrade proteins such as those that
make up the basement membrane separating epithelial cells from stromal tissues, facilitating
tumour cell invasion.

The complex interplay of molecular- and tissue-scale dynamics in a tumour can have
profound, unforeseen effects on invasion and outcome of therapy. Invasion introduces barriers
to resection and treatment; even when resection is an option, it may be challenging to
define optimal mass removal because of the difficulty in obtaining an accurate estimate
of tumour margin and invasion potential. While angiogenesis plays a critical role in
promoting tumour growth and invasion, anti-angiogenic therapy does not always increase
length of survival [62, 68, 322, 460], in spite of clinically observed tumour regression
[281, 453]. Anti-angiogenic therapy may also exacerbate hypoxia [492] and cause tumour mass
fragmentation, cancer cell migration and tissue invasion [57, 323, 327, 401, 411, 459, 474].
However, pharmacological promoters of cell adhesion are being employed in anti-invasive
therapy [25, 52, 153, 168, 261, 278, 326, 344, 370, 566] with inconsistent results [326], perhaps
partly due to drug-induced cellular plasticity [198, 556].

Although molecular mechanisms and cell-scale migration dynamics are well described,
the variable empirical and qualitative observations of tumour invasion and response to therapy
illustrate the critical need for biologically realistic and predictive multiscale mathematical
models that integrate tumour proliferation and invasion with microvascular effects and
microenvironmental substrate gradients. Such complex systems, dominated by large numbers
of processes and highly nonlinear dynamics, are difficult to approach by experimental
methods alone and can typically be better understood with appropriate mathematical models
and sophisticated computer simulations, in addition and complementary to experimental
investigations. The complexity of cancer progression necessitates a 3D multiscale modelling
approach to produce predictive tumour simulators that couple processes occurring at various
length and time scales to capture the realistic dynamics involved in the biological environment.
While there are more than 100 types of cancer, each with many subtypes, it has been
hypothesized that nearly all cancers develop a common set of basic characteristics [255];
(1) self-sufficiency in growth signals, (2) insensitivity to anti-growth signals, (3) evasion of
apoptosis, (4) limitless replicative potential, (5) sustained angiogenesis and (6) tissue invasion
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and metastasis. By focusing on these common elements, mathematical modelling aims to
contribute to the prevention, diagnosis and treatment of this complex disease.

The modelling has the potential to provide important insight into the root causes of
solid tumour invasion and metastasis and aid in the understanding of experimental and
clinical observations, which may sometimes seem contradictory, and in the design of new,
targeted experiments. Biophysically justified mathematical models may also be useful in
assessing various treatment strategies. The ultimate goal is for modelling and simulation
to aid in the development of individualized therapy protocols to minimize patient suffering
while maximizing treatment effectiveness. In order to achieve this goal, mathematical and
computational models need to quantify the links of 3D tumour tissue architecture with growth,
invasion and the underlying cellular/microenvironmental characteristics.

Numerous mathematical models have been proposed to study the various phases of
cancer progression (e.g. see the reviews Adam [6], Chaplain [106], Bellomo and Preziosi
(2000), Moreira and Deutsch [381], Bellomo et al [59], Swanson et al [507], Araujo and
McElwain [34], Mantzaris et al [362], Friedman [199], Ribba et al [450], Quaranta et al [439],
Hatzikirou et al [260], Nagy [389], Byrne et al [88], Fasano et al [182], Jackson et al [286],
van Leeuwen et al [531], Roose et al [456], Graziano and Preziosi [248], Harpold et al [256],
Friedman et al [201], Sanga et al [464], Martins et al [365], Deisboeck et al [150], Anderson and
Quaranta [30], Bellomo et al [60], Cristini et al [127], Wang and Deisboeck [541], Preziosi and
Tosin [430], Jackson et al [534] and Tracqui [525]). Most models fall into two broad categories,
based on how the tumour tissue is represented: discrete cell-based models and continuum
models. Although continuum and discrete approaches have each provided important insight
into cancer-related processes occurring at particular length and time scales, the complexity of
cancer and the interactions among the cell- and tissue-level scales ideally call for a multiscale
continuum-discrete (hybrid) approach, coupling biological phenomena from the molecular
and cellular scales to the tumour scale (e.g. see the recent work by Kim et al [317], Stolarska
et al [498] and Bearer et al [55]).

In discrete modelling, individual cells are tracked and updated according to a specific
set of biophysical rules. This approach is particularly useful for studying carcinogenesis,
natural selection, genetic instability and interactions of individual cells with each other and the
microenvironment. Analyses of cell population dynamics have also been employed in order to
study biological characteristics applying to all cells in a particular population, such as response
to therapy and in studies of immunology. There are two main types of discrete models, lattice-
based and lattice-free. The former describes the dynamics of discrete tumour cells as automata
on a grid whose states are governed by a set of deterministic or probabilistic rules. The latter
type describes the actions of discrete cells in arbitrary locations and their interactions. Because
these methods are based on a series of rules for each cell, it is possible to translate detailed
biological processes (e.g. cell-cycle events, mutation pathways) into rules for the model. On
the other hand, the computational cost increases rapidly with the number of cells modelled,
limiting these methods in the spatial and temporal scales they can achieve. As a result, a full
simulation of a 1 mm3 tumour spheroid, which may contain several hundred thousand cells, is
not currently feasible using a solely discrete approach. Further, while these models are capable
of describing biophysical processes in significant detail, it may be nontrivial to obtain reliable
measurements of model parameters through experiments that can measure the necessary detail
at the cell scale.

In larger scale systems, continuum methods provide a good modelling alternative.
Continuum models treat tumours as a collection of tissue, where densities or volume fractions
of cells are described. This approach draws upon principles from continuum mechanics to
describe cancer-related variables as continuous fields by means of partial differential and
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integro-differential equations. Individual cells and other elements are not tracked; model
variables may include cell volume fractions and cell substrate concentrations, e.g. nutrient,
oxygen and growth factors. In addition, fast numerical solvers can be developed. Continuum
model parameters may be somewhat easier to obtain, analyse and control compared with
the discrete case. They may also be more accessible through laboratory experimentation.
Although these models are appropriate at the tissue scale where gross tumour behaviour
can be quantified, the limitations in scale prevent them from modelling individual cells and
discrete events (e.g. epithelial to mesenchymal phenotypic transition that leads to individual
cell migration). This may be important when studying the effect of genetic, cellular and
microenvironment characteristics on overall tumour behaviour.

Continuum–discrete models attempt to combine both continuum and discrete descriptions
of cancer biology in order to bridge the subcellular- and cellular-scales to the tumour scale.
In one approach, which we term a composite approach, substances such as oxygen, nutrient,
drug, growth factors and certain tissue features (e.g. extracellular matrix) may be described
as continuum fields in the tumour microenvironment, while individual discrete elements (e.g.
cells or parts of cells) evolve dynamically in response to local conditions such as substance
concentration. This modelling strategy suffers from the same limitations as mentioned above
for discrete modelling. In a more promising approach, the tumour tissue itself is modelled
containing both discrete (cell-scale) and continuum (tumour-scale) elements. This method,
which we term a hybrid approach, has the potential to combine the best features of both
discrete and continuum models, although more work is necessary to make it competitive with
the continuum results obtained at large scales.

In this paper, we provide a limited overview of the theoretical modelling of cancer. While
we briefly review discrete modelling, our focus is on the continuum approach, and we discuss
hybrid-modelling frameworks where the tumour tissue is modelled containing both discrete
(cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the
centimetre tumour scale. We also review recent examples that incorporate experimental
data into model parameters. We limit the scope further by considering models of tumour
progression that do not distinguish tumour cells by their age. We do not consider tumour
immune system interactions nor do we describe models of therapy. For age-structured models,
see, for example, [2, 46, 165, 166, 537, 538], and for tumour immune system modelling see,
for example, [6, 7, 58, 61, 147, 184, 354, 516]. Further details and references may be found in
the review papers listed above.

As we show, mathematical modelling predicts that transport limitations of cell nutrients,
oxygen and growth factors may result in cell death that leads to morphological instability,
providing a mechanism for invasion via tumour fingering and fragmentation. These conditions
induce selection pressure for cell survivability, and may lead to additional genetic and
phenotypic changes. Mathematical modelling shows that parameters that control the tumour
mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor
of invasiveness and treatment prognosis.

The outline of this paper is as follows. In section 2 we review continuum modelling
and the incorporation of biologically relevant parameter values into multiscale models of
tumour growth and invasion. A basic model founded on classical work is reviewed first,
and then expanded to tumour growth in heterogeneous tissue and the host vascular response
(angiogenesis). We then consider multiphase modelling to simulate multiple cell species, and
include effects from cell adhesion and chemotaxis. In particular, we evaluate the relevance
of theoretical cancer modelling to patients suffering from glioma (brain) tumours and ductal
carcinoma in situ (DCIS) (breast) tumours. We briefly review discrete modelling in section 3.
In section 4 we discuss hybrid modelling, where the tumour is described using both continuum
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and discrete elements, and which is capable of connecting cell and tissue scales to provide
practical as well as theoretical insight into cancer growth. Conclusions and future directions
are described in section 5.

2. Continuum modelling

2.1. Background

Continuum tumour models are based on reaction–diffusion equations describing the tumour cell
density (e.g. [23, 544, 414])), extracellular matrix (ECM), matrix-degrading enzymes (MDEs)
(e.g. [75, 76, 111, 264, 287]) and concentrations of cell substrates such as glucose, oxygen,
and growth factors and inhibitors (e.g. [69, 104, 109, 225, 257, 263, 353, 391]). Classical work
[250, 251] used ordinary differential equations to model tumours as a homogeneous population,
as well as partial differential equation models confined to a spherical geometry. In the case of
avascular tumours, growth has been modelled as a function of cell substrate concentration,
usually oxygen. More recent work has incorporated cell movement, through diffusion
(e.g. [80, 109, 130, 293, 478, 480, 508–511, 557]), convection (e.g. [93, 139, 414, 543, 546])
and chemo/haptotaxis (e.g. [364, 414, 478]). Cell proliferation, death and pressure have also
been considered (e.g. [3, 22, 39, 59, 73, 84–87, 92, 93, 95, 96, 120, 129, 146, 186, 189, 220, 222,
272, 283–285, 287, 298, 328, 336, 346, 414, 420, 457, 468, 493, 496, 521, 536, 545]). Linear
and weakly nonlinear analyses have been performed to assess the stability of spherical
tumours to asymmetric perturbations (e.g. [8, 34, 88, 87, 89, 91, 92, 96, 109, 129, 235, 339])
in order to characterize the degree of aggression. Various interactions with the
microenvironment, such as nutrient-, inhibitory factor- or stress-induced limitations to
growth, have also been studied (e.g. [4, 5, 19, 21, 23, 35, 37, 38, 107, 108, 138, 298, 457]). The
models may account for observations of stronger cell–cell interactions (cell–cell adhesion
and communications), high polarity and strong pulling forces exchanged by cells and
ECM ([117–119, 198]). ECM reorganization by tumour cells [198] has been incorporated,
and various degrees of dependence of the cells on signals from the matrix have been
modelled. The models are typically single species (e.g. single-phase tumours), treating
the tumour (or more generally biological tissues) as fluid (e.g. [73, 74, 89, 91, 92, 95,
105, 206, 251]), elastic/hyperelastic (e.g. ( [18, 21, 35, 210, 211, 218, 279, 298, 372, 477, 536]),
poroelastic (e.g. [457]), viscoelastic (e.g. [346, 317], and elasto-viscoplastic (e.g. [24].
Theoretical nonlinear analyses of various tumour models mentioned above have been
performed (e.g. [53, 78, 122, 131–134, 136–142, 155, 182, 199, 202–204, 207, 208, 389, 404,
480, 515, 517, 539, 558, 562, 564, 576, 577]). Recently, mixture models have been developed
that are capable of describing the detailed interactions among multiple solid (cell) species and
extra-/intra- cellular liquids (see section 2.5).

In the next subsections, we first describe tumour growth in homogeneous tissues by posing
a basic continuum tumour model, focusing on the formulation of [129, 339] based on the
classical work mentioned above. Model parameters are calibrated from experimental data.
Later, in section 2.3, we discuss tumour growth in complex, heterogeneous tissues. Tumour
mechanical responses are also reviewed. The basic model is then extended in section 2.4 to
include angiogenesis and vascular growth.

2.2. Basic tumour model

2.2.1. Overview. A basic tumour model represents tumour cells growing as a sphere-like
structure without direct access to the vasculature. During this avascular growth, tumour
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cells receive oxygen, nutrients and growth factors via diffusion through the host tissue. This
phase can be investigated by in vitro experiments where cancer cells are cultured in a three-
dimensional geometry [315, 324, 383, 384, 505, 506, 540]. Due to cell–cell adhesion, certain
cancer cell lines will self-organize into multicellular, roughly spheroidal colonies. The outer
cells tend to proliferate while the cells in the interior necrose (die) due to lack of nutrients.
For example, the typical distance an oxygen molecule will diffuse before being uptaken is
approximately 100 µm. This limits the size to which a tumour spheroid can grow (1–2 mm in
diameter). A layer of quiescent (hypoxic) cells separates the necrotic core from the proliferating
rim. Because of the three-dimensionality, the growth of multicellular spheroids may be similar
to that of in vivo avascular tumours. There is a significant amount of experimental data in the
literature on the internal structure of multicell spheroids and the spatio-temporal distribution of
cell substrates (see references above). Thus, this is a good model system to test mathematical
predictions.

Greenspan [250, 251] developed one of the earliest continuum models of tumour growth
as a function of diffusion of cell substrates, as observed in previous studies (e.g. [81, 518]).
Shymko and Glass [482] accounted for a mitotic inhibitor and analysed the stability of
growth, McElwain and Morris [368] accounted for apoptosis, and Adam [6] discussed the
immune response. Byrne and Chaplain [89, 91, 93] studied the growth and stability of radially
symmetric tumours without and with necrosis, as well as the effects of cell substrates and
inhibitors. Chaplain [105] presented mathematical models of spherical tumour growth through
the stages of avascular growth, angiogenesis and vascularization, as well as pattern formation
in cancer [106]. Friedman and Reitich [206, 207] and Cui and Friedman [138] studied non-
necrotic vascularized radially symmetric and spatially patterned tumours modelled through
a free-boundary problem, where tumour growth was dependent on the level of diffusing cell
substrates. See also [131, 134, 136, 202, 253, 515, 517, 558] for later extensions to a variety of
different tumour models.

Based on these and other classical continuum tumour models, Cristini et al [129] performed
computer simulations of tumour growth beyond the limited capabilities of mathematical linear
analyses and spherical geometries, thus enabling the nonlinear modelling of complex tumour
morphologies. Using a new formulation of these classical models, they showed that tumour
evolution could be described by a reduced set of two dimensionless parameters (related to
mitosis rate, apoptosis rate, cell mobility and cell adhesion), independent of the number of
spatial dimensions. These parameters regulate the morphology and growth (invasiveness)
of avascular and vascularized tumours. Critical conditions were predicted that separate
compact, noninvasive mass growth from unstable, fingering, infiltrative progression [129]
thus suggesting that the mechanisms that control tumour morphology also control its ability
to invade. Recently, Li et al [339] have extended this work to arbitrary geometries in 3D.
This morphological instability provides a mechanism for invasion without angiogenesis and
may allow the tumour to overcome diffusional limitations to growth by creating excess
surface area that exposes more interior cells to oxygen and nutrient. Indeed, numerical
simulations show that the tumour grows unbounded by repeated sub-spheroid growth
(budding), fingering and folding to create a complex shape. That is, morphological instability
driven by microenvironmental gradients of nutrient and oxygen selects for locally higher cell
proliferation. Tumours may thus escape diffusion-limited constraints without recourse to
angiogenesis, as has been observed experimentally (e.g. [148, 194]).

2.2.2. Mathematical formulation. Define �(t) to be the tumour domain, �(t) to be the
boundary between the tumour tissue and the host tissue, n to be the unit outward normal
vector to � and x to be the position in space. See figure 1. Following Greenspan [251], Byrne
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Figure 1. Diagram of a basic non-necrotic tumour. The tumour occupies the volume �, � is the
interface between tumour tissue and health tissue, n is the unit outward normal to �.

and Chaplain [89], Friedman and Reitich [206], Cristini et al [129], and others, it may be
assumed that in the proliferating tumour domain, the cell density is constant. Therefore, mass
changes correspond to volume changes. Defining u to be the cell velocity, the local rate of
volume change ∇ · u is given by

∇ · u = λp, (1)

where λp is the cell-proliferation rate and λp is given by

λp = bn − λA, (2)

where n denotes the concentration of a cell substrate (e.g. oxygen or glucose). The first term
in equation (2) corresponds to the rate of volume growth due to mitosis while the second is the
rate of volume loss due to apoptosis (programmed cell death). Here, λA is the rate of apoptosis
(which may actually depend on n) and b is a measure of mitosis.

Cell substrates diffuse through the extracellular matrix (ECM), as well as intracellularly,
and are uptaken by tumour cells. Since the rate of diffusion of oxygen (or glucose) is much
faster (e.g. ∼1 min−1) than the rate of cell proliferation (e.g. ∼1 day−1), the substrate may be
regarded to be in a steady state for a given tumour morphology (e.g. [89, 129, 206, 251]). This
gives:

0 = D∇2n + �, (3)

where � is the rate at which nutrient is added to � and is given by

� = λB(nB − n) − λn, (4)

where the first term describes the source of nutrient from the vasculature while the second
describes nutrient uptake by cells. Here, λB is the blood-tissue transfer rate of nutrient, nB

is the concentration of nutrient in the blood and λ is the rate of consumption of nutrient by
the tumour cells. In this simplified model, the vasculature is assumed to be uniform, and thus
vascular growth is associated with a bulk source of oxygen, nutrients and growth factors. Note
this implies that growth is limited by the diffusion of the cell substrates.

To determine the cell velocity, Darcy’s law may be used as the constitutive assumption
(e.g. [89, 129, 206, 250]):

u = −µ∇P , (5)

where P is the oncotic (solid) pressure and µ is a mobility that reflects the combined effects
of cell–cell and cell–matrix adhesion. Alternatively, the velocity may be determined using
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the Stokes equations (e.g. [186, 189, 204, 558]) or the Darcy-Stokes (Brinkman) equations
((e.g. [575]). Models of viscoelasticity (e.g. [346]), elasto-viscoplasticity [16] and soft tissue
elasticity may also be employed, see Internal stress in section 2.3.

The boundary conditions on the tumour interface � may be taken to be

(n)� = n∞, (6)

(P )� = γ κ, (7)

where the pressure boundary condition (7) reflects the influence of cell–cell adhesion through
the parameter γ and κ is the local total curvature. For simplicity, here assume n∞ is constant
so that outside the tumour, the nutrient is uniform. Nutrient inhomogeneity in the tumour
microenvironment in 2D has been considered in [126, 194, 350, 351, 575] and more recently
in 3D in [193, 464, 555].

The normal velocity V = n · (u)� of the tumour boundary is

V = −µn · (∇P)�. (8)

Following [89, 129, 206, 250] and others, assume that λ, λA, λB, nB, b are uniform.
Following [129], denote λM = bn∞ to be the characteristic mitosis rate, λR = µγL−3

D to
be the intrinsic relaxation time scale, and B = nBλB/n∞(λB + λ) to be a measure of the extent
of vascularization. Introducing the non-dimensional length scale LD = D

1
2 (λB + λ)−

1
2 , and

time scale λ−1
R , a modified concentration �̄ and pressure p̄ can be defined [129]:

n = n∞(1 − (1 − B)(1 − �̄)),

P = γ

LD

(
p̄ + (1 − �̄)G + AG

x · x

2d

)
, (9)

where G and A measure the relative strength of cell–cell and cell–matrix adhesion and
apoptosis, respectively:

G = λM

λR
(1 − B),

A = λA/λM − B

1 − B
. (10)

Dropping the bar notation, the non-dimensional equations for � and p can be obtained:

∇2� − � = 0, (11)

∇2p = 0, (12)

with boundary conditions:

(�)� = 1, (13)

(p)� = κ − AG
(x · x)�

2d
(14)

in a d-dimensional tumour (d = 2, 3). The non-dimensional normal velocity of the tumour–
host interface is

V = −n · (∇p)� + Gn · (∇�)� − AG
n · (x)�

d
. (15)
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2.2.3. Regimes of growth. A study of spherically symmetric tumour growth provides insight
into the regimes of growth described by the model (e.g. [89, 129, 339]). In this case, the PDEs
reduce to ODEs in the polar coordinate r . Accordingly, from equation (15) the evolution
equation for the tumour radius R is

dR

dt
= V = −AG

R

d
+ G




I1(R)

I0(R)
, d = 2,(

1

tanh(R)
− 1

R

)
, d = 3.

(16)

For a radially symmetric tumour, |G| rescales time. In all dimensions, unbounded growth
(R → ∞) occurs if and only if AG � 0. Three regimes of growth are identified, and the
behaviour is qualitatively unaffected by the number of spatial dimensions d.

(1) Low vascularization: G � 0 and A > 0 (i.e. B < λA/λM). Note that the special case of
avascular growth (B = 0) belongs to this regime. The evolution is monotonic and always
leads to a stationary state R∞ (if A > 1, then R∞ = 0). This behaviour is in agreement
with experimental observations of in vitro diffusional growth [251] of avascular spheroids
to a dormant steady state [383, 505]. In the experiments, however, tumours always develop
a necrotic core that further stabilizes their growth [91].

(2) Moderate vascularization: G � 0 and A � 0 (i.e. 1 > B � λA/λM). Unbounded growth
occurs from any initial radius R0 > 0. The growth tends to exponential for A < 0 with
velocity V → −AGR/d as R → ∞, and to linear for A = 0 with velocity V → G as
R → ∞.

(3) High vascularization: G < 0 (i.e. B > 1). For A > 0, growth (V > 0) may occur,
depending on the initial radius, and is always unbounded; for A < 0 (for which cell
apoptosis is dominant: λA/λM > B), the evolution is always to the only stationary solution
R∞ = 0. This stationary solution may also be achieved for A > 0. The stationary radius
R∞ is independent of G, and is a solution of V = 0 with V from (16).

2.2.4. Linear analysis. Consider a perturbation of the radially symmetric tumour interface �:

r� = R(t) + δ(t)

{
cos(lθ), d = 2,

Yl,m(θ, φ), d = 3,
(17)

where r� is the radius of the perturbed tumour–host interface, δ is dimensionless perturbation
size and Yl,m is a spherical harmonic, where l and θ are polar wavenumber and angle and m

and φ are azimuthal wavenumber and angle, respectively. By solving the system of (11)–(15)
in the presence of a perturbed interface and matching powers of the perturbation δ, we obtain
the evolution (16) for the unperturbed radius R and the following equation for the shape factor
δ/R [129, 339]:

(
δ

R

)−1 d (δ/R)

dt
=




G − l(l2 − 1)

R3
− G

l + 2

R

I1(R)

I0(R)
− G

Il+1(R)

Il(R)

I1(R)

I0(R)
+ l

AG

2
, d = 2,

G − l(l + 2)(l − 1)

R3

−
(

G
l + 3

R
+ G

Il+3/2(R)

ll+1/2(R)

) (
1

tanh(R)
− 1

R

)
+ l

AG

3
, d = 3.

(18)

Note that δ/R is the appropriate way to measure the perturbation since the underlying radius
of the symmetric tumour is time-dependent. Also observe that the linear evolution of the
perturbation is independent of the azimuthal wavenumber m and that there is a critical mode lc
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such that perturbations grow for l < lc and decay for l > lc. The critical mode depends on the
parameters A, G and the evolving radius R. Prior to the work of Cristini et al and Li et al linear
analyses [89, 93, 251] considered only the special case where the unperturbed configuration is
stationary (i.e. R constant in time).

Linear stationary states. In the low-vascularization regime, the existence of non-symmetric,
steady-state tumour shapes may be predicted by linear theory. This is seen as follows. The
stationary radius R∞ is solution of (16) with V = 0. An analysis [129] of equation (18)
reveals that there exists a non-negative critical value G = Gl(R∞, A) such that perturbation
also remains stationary. The perturbation δ/R∞ grows unbounded for G > Gl and decays to
zero for G < Gl.

Linear self-similar evolution. The analysis described above for stationary states may be
extended [129, 339] to the case in which the underlying symmetric tumour is time-dependent.
In particular, one may obtain self-similar growth for a single mode l. This can be done as
follows. Take G to be constant and take A = A(l, G, R) such that (d/dt)(δ/R) = 0. This
gives,

A(l, G, R) =




2(l2 − 1)

GR3
+ 2

(
l +

2

l

)
1

R

I1(R)

I0(R)
+

2

l

Il+1(R)I1(R)

Il(R)I0(R)
− 2

l
, d = 2,

3(l − 1)(l + 2)

GR3
+ 3

(
l +

3

l

)
1

R

(
1

tanh R
− 1

R

)

+
3

l

Il+3/2(R)

Il+1/2(R)

(
1

tanh R
− 1

R

)
− 3

l
, d = 3.

(19)

In figure 2 (top) the apoptosis parameter A(l, G, R) is shown for d = 2 (dashed) and d = 3
(solid) from [129, 339]. The growth velocity V corresponding to self-similar evolution,
obtained from (16) with A = A(l, G, R), is plotted in figure 2 (bottom). The A-curves
separate parameter space into regions of stable and unstable growth of a given mode l. This
figure also indicates that in the low-vascularization (diffusion-dominated) regime where G > 0
and A > 0), self-similar evolution towards a stationary state is not possible for G constant.
Instead, one may obtain self-similarly growing and shrinking tumours. In the moderate and
high-vascularization regimes, the only self-similarly evolving tumours shrink to a point.

This work shows that if one is able to control the apoptosis parameter in a subtle way
via equation (19) by applying appropriate therapeutic treatments, for example, one has the
possibility to prevent the tumour from becoming unstable and invasive. This has important
implications for the angiogenic response of the host—a smaller surface area to volume ratio
means less flux of angiogenic factors—as well as for the resectability of the tumour—a compact
shape is easier to remove surgically.

Diffusional instability. The linear stability analysis [129, 339] shows that during growth,
perturbations can increase only in the low-vascularization regime. In the moderate and high-
vascularization regimes, perturbations always decay during growth. For example, taking A

to be a non-negative constant, observe from figure 2(top) that the evolution will cross the
A(l, G, R) curves and hence becomes unstable only for G > 0. Instability arises because
growth is limited by diffusion of nutrient (e.g. diffusional instability). This is analogous to
the Mullins–Sekerka diffusional instability that occurs in crystal growth [385]. In the high-
vascularization regime, shrinkage may be unstable.
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Figure 2. Analysis of the basic tumour. Top: apoptosis parameter A as a function of unperturbed
radius R from condition (19) for self-similar evolution; d = 2 (dashed) and d = 3 (solid); G and l

labelled. Asymptotic behaviours are dotted (see [129]). The two solid curves labelled with values
of d correspond to stationary radii. Bottom: corresponding growth velocity G−1V for l = 4.

2.2.5. Model calibration. The parametersA andG in the basic tumour model can be estimated
by comparison with experimental tumour spheroid results. An estimation was performed by
Frieboes et al [194], using ACBT (grade IV human glioma multiforme) tumour spheroids,
where experiments were performed and the results were analysed using the basic mathematical
model. In their in vitro experiments, the glucose and fetal bovine serum (FBS) concentrations
were varied to modify cell adhesion and rates of cell proliferation. Rates of cell proliferation
increased with serum concentration as expected. Cases with 1% FBS had slowest tumour
mass growth, whereas 10% FBS cases had the fastest. Note that serum may also alter adhesion
while increasing proliferation. Furthermore, cell mobility (adhesion) was found to increase
(decrease) with glucose concentration, in agreement with previous observations that higher
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levels of glucose may reduce oxygenation in large spheroids [384]. Thus, an important effect
of higher glucose was to decrease cell adhesion forces and thereby contribute to morphologic
instability. Most stable, compact morphologies were observed with low/medium levels of both
glucose and FBS, in which tumours shed fewest cells and attained smallest overall sizes. In
contrast, the combination of high glucose and any serum concentration exhibited very unstable
morphologies because cells were very motile. Similarly, the combination of any glucose and
10% FBS had very unstable morphologies apparently because cells proliferated faster than
they had time to connect into a stable structure.

By estimating the size of the viable rim of cells on the tumour periphery, the diffusion
length LD ≈ 100 µm is obtained. By fitting equation (16) to the spheroid growth curves at
small times (nearly exponential growth), the proliferation rate is estimated to be λM ≈ 1 day−1.
The calibrated model is consistent with other measurements. For instance, equation (3) gives
an oxygen penetration length scale Loxy = (Doxy/λoxy,uptake)

−1/2. By measuring the distance
between the necrotic core and the basement membrane, this length can be estimated to be
100 to 140 µm; using previously published values λoxy,uptake = 9.41 × 10−2 s−1 [102] and
Doxy = 1.45 × 10−5 cm2 s−1 [393] gives Loxy = 124 µm, in excellent agreement with these
results. Similar calculations were consistent for calculating the glucose penetration length
and uptake rate [230, 252, 301], confirming that hypoxia is the limiting factor for tumour cell
viability.

An analytical relation between A and R can be established for a steady-state solution by
taking V = 0 in equation (16). The corresponding steady-state relation A = As(R) can be used
to estimate the value of A in the experiment by taking R to be the average experimental tumour
radius, non-dimensionalized by LD, of morphologically stable spheroids (low/medium levels
of both glucose and FBS). The parameter A was thus estimated as 0.26 � A � 0.38. This is
an over-estimate in the proliferating rim, however, because the mathematical model described
assumes that cell death occurs uniformly throughout the spheroid. In fact, cell-death should be
spatially heterogeneous with the largest values occurring in the interior hypoxic region where
cells are starved of nutrients.

Frieboes et al (2006) showed that the parameter G can be estimated by comparing the
pressure in the proliferating rim with the pressure at the tumour boundary. In the proliferating
rim at steady state, the dimensional pressure is approximately P ≈ L2

DλM/3µ while at the
tumour boundary P ≈ 2τ/LDR, where R is the non-dimensional (stable) tumour spheroid
radius which follows from equation (7). Equating the two and using the definition of G with
B = 0, again with R as the average experimental tumour radius, non-dimensionalized by
LD, the estimate 0.6 � G � 0.9 is obtained for stable tumour spheroids. Spheroids with
values of G above this range will be morphologically unstable due to weak adhesive forces.
Interestingly, this approach provides an indirect method for estimating G without directly
measuring cell–cell adhesion [194].

Given A and G, Frieboes et al (2006) used the linear stability analysis to predict the
morphological stability of the tumour spheroids. In figure 3 [194] a phase diagram is presented
in which the marginal stability curves A(l, G, R) from equation (19) are plotted with l = 4 and
G = 0.9 and G = 0.6. The parameter l = 4 was chosen because unstable morphologies in vitro
seemed to exhibit mostly tumour surface perturbations characterized by low wave numbers
(e.g. 3 or 4) at the onset of the instability. The stationary relation As(R) is also shown. The
horizontal lines indicate the experimentally estimated values A = 0.26 and A = 0.38 obtained
as described above. The experimental range of the parameters A and G is indicated by the
shaded region. In the presence of cell substrate gradients, morphology can be ‘unstable’ when
cell adhesion is weak (large G), whereas for small G, tumour morphology is ‘stabilized’ by cell
adhesion [129]. The larger a tumour grows, the weaker the stabilizing effect of cell adhesion.
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Figure 3. Evaluation of tumour stability. Diagram shows death parameter A versus spheroid radius
R (rescaled with diffusion length L). The curves for given values of G are obtained from [194]
governing spheroid morphological stability. Experimental conditions for morphologically stable
spheroids (shaded area) are enclosed by these and by the horizontal lines delimiting the range
of values of A, all estimated by fitting the mathematical model to the in vitro data. The curve
‘stationary radius’ is obtained by setting dR/dt = 0 in equation (1) in [194] governing spheroid
radius growth. Three representative stationary spheroid radii are reported on this curve as sampled
in vitro. Since this curve crosses and continues beyond the shaded region, most glioma spheroids
under these in vitro conditions are marginally stable. Reprinted from Frieboes et al 2006 Cancer
Res. 66 1597, with permission from the American Association for Cancer Research.

Each A(l, G, R) curve describes a tumour with specific cell characteristics and divides the
parameter space into stable (on the left) and unstable regions (on the right). The lower the
cell adhesion, the more shifted to the left the G curve is, thus reducing the range of sizes of
tumours that will be morphologically stable. As a tumour grows, this corresponds to moving
from left to right and thus may lead to eventually crossing the G-curve corresponding to that
tumour’s degree of morphological stability.

In figure 3, the filled symbols denote experimental spheroids. The spheroid denoted by
the filled square is very stable, being on the left of all curves that are compatible with stable
morphologies; the spheroid denoted by the filled diamond is very unstable and the spheroid
denoted by the filled circle is marginally stable (i.e. it may develop morphologic instability
depending on the value of G). In their experiments, Frieboes et al (2006) were able to observe
both stable and unstable spheroids by varying the parameter G. This was achieved by altering
the glucose and FBS concentrations consistent with the theory since FBS and glucose affect
the parameter G by affecting cell proliferation and adhesion as described above. Thinking of
this another way, this work shows that by training the model on stable spheroid data to estimate
G, the model is able to predict both stable and unstable spheroid morphologies.

2.2.6. Nonlinear results. To investigate the effect of nonlinearity, nonlinear analyses
have been performed. A sample of results is as follows (see also references above). The
well posedness of solutions has been proven by Friedman and Reitich [206] and Cui and
Friedman [139] for radially symmetric solutions using the Darcy law model; Cui [131] for a
model with inhibitors; Friedman and Reitich [207], Bazaliy and Friedman [53, 54], Cui [132],
Cui and Wei [141] and Cui [134] for non-symmetric solutions; Friedman [200] and Wu
and Cui [558] for a Stokes model; Zhou, Escher and Cui [577] for a model of multilayer
tumours and Cui [135] for a hyperbolic equation model of tumour growth. Bifurcations from
spherically symmetric solutions have been studied by Friedman and Reitich [208], Friedman
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and Hu [203–205] and Zhou and Cui [576]. In recent work, Xu and Gilbert [564] formulated
and analysed inverse problems that connect a tumour model for ductal carcinoma in situ with
clinical data; the authors also performed two-dimensional numerical simulations.

Because of the difficulty in rigorously analysing the models, and the limitations of
theoretical analyses (e.g. proofs are often not constructive), numerical simulation is critical
to obtaining insight into the behaviour of solutions in the nonlinear regime. For the Darcy
law model presented earlier, efficient numerical algorithms have been developed (e.g. Cristini
et al [129] and Li et al [339]) to solve equations (11)–(15) in two- and three-dimensions. In the
numerical approach, the partial differential equations in the whole domain were reformulated
into boundary integral equations that hold only on the tumour/host interface, using potential
theory.

Nonlinear stationary states. Friedman and Reitich [207, 208] proved that there exist non-
symmetric steady tumour shapes that are solutions of the fully nonlinear equations. Their
proof was not constructive, however. In [129], the numerical scheme described above was
used to obtain approximations of these solutions in 2D. In the nonlinear case, non-symmetric
steady tumour shapes may be found by taking G = GNL

l < Gl , where Gl is the result from
linear theory (section 2.2.4). It is found that GNL

l − Gl = O(δ2), where δ is a measure of the
perturbation size. Thus, nonlinearity is destabilizing for the stationary shapes.

Nonlinear self-similar evolution. The effect of nonlinearity on the self-similar evolution for
d = 2 predicted from the linear analysis by Cristini et al (2003) can be investigated. As
discussed in section 2.2.4, linear self-similar evolution requires the time-dependent apoptosis
parameter A = A(l, G, R). In the nonlinear regime, Cristini et al (2003) used this linear
relation with the radius R, determined from the area of an equivalent circle: R = √

Area/π . In
figure 4, linear (dashed) and nonlinear (solid) solutions are compared in the low-vascularization
regime for l = 5, G = 1, A = A(l, G, R) and R0 = 4. Since V < 0, the tumours shrink and A

increases. In the left frame, the initial perturbation is δ0 = 0.2 and in the right the perturbation
initially is δ0 = 0.4. Results reveal that large perturbations are nonlinearly unstable and grow,
leading to tumour fragmentation. This can have significant implications for therapy. For
example, one can imagine an experiment in which a tumour is made to shrink by therapeutic
intervention such that A is increased by increasing the apoptosis rate λA. This example shows
that a rapid decrease in size can result in shape instability leading to tumour break-up and
the formation of microscopic tumour fragments that can enter the blood stream through leaky
blood vessels, thus leading to metastases.

Nonlinear evolution in the high-vascularization regime. All the nonlinear simulations of
growth in the high-vascularization regime lead to stable evolution, in agreement with the
linear analysis, i.e. well-vascularized tumours tend to grow in compact, nearly spherical shapes
showing little or no signs of invasiveness. This prediction suggests that tumours could maintain
stable morphology under more normal microenvironmental conditions, as has been observed
in experiments [57, 323, 327, 390, 459, 490].

In some cases, it has been experimentally observed that highly vascularized cancers evolve
invasively by extending branches into regions of the external tissue where mechanical resistance
is lowest (e.g. [105]). These results suggest that formation of invasive tumours should be due
to anisotropies rather than to vascularization alone. Anisotropies (e.g. in the distribution of the
resistance of the external tissue to tumour growth, or in the distribution of blood vessels) are
neglected in the model studied here but will be included in the next section. This consequence,
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Figure 4. Analysis of the basic tumour. Left: self-similar shrinkage for R0 = 4 and δ0 = 0.2
(t = 0 to 0.96 shown). Right: Unstable shrinkage for R0 = 4 and δ0 = 0.4 (t = 0 to 0.99). The
solid curves correspond to the nonlinear solution and the dashed curves to the linear. In both cases,
d = 2, G = 1, l = 5 and the evolution is in the low-vascularization regime. A = A(l, G, R)

given in (19) and plotted in figure 2 (top). Reprinted from Cristini et al J. Math. Biol. 46 215.
Copyright © 2003 Springer. With kind permission of Springer Science and Business Media.

which had not been recognized before, is supported by recent experiments [394] of in vivo
angiogenesis and tumour growth.

Nonlinear unstable growth in the low vascularization regime. In figure 5, the evolution of
the 2D tumour surface from a nonlinear boundary integral simulation (solid) is compared
with the result of the linear analysis (dotted), using A = 0.5, G = 20 [129]. According to
linear theory (equation (16)), the tumour grows. The radially symmetric equilibrium radius
R∞ ≈ 3.32. Mode l = 2 is linearly stable initially, and becomes unstable at R ≈ 2.29. The
linear and nonlinear results in figure 5 are indistinguishable up to t = 1, and gradually deviate
thereafter. A shape instability develops and forms a neck. At t ≈ 1.9 the linear solution
collapses suggesting pinch off. However, the nonlinear solution is stabilized by the cell-to-cell
adhesive forces (surface tension) that resist development of high negative curvatures in the
neck. This is not captured by the linear analysis. Instead of pinching off, as is predicted
by linear evolution, the nonlinear tumour continues to grow and develops large bulbs that
eventually reconnect thus trapping healthy tissue (shaded regions in the last frame in figure 5)
within the tumour. The frame at t = 2.531 describes the onset of reconnection of the bulbs.
It is expected that reconnection would be affected by diffusion of nutrient outside the tumour,
which is not included in the model used here (but will be considered in the next section).

An analogous evolution is observed in 3D [339]. See figure 6, where two 3D views of
the morphology are shown. The tumour does not change volume in the simulation because
of the spatial rescaling. At early times, the perturbation decreases and the tumour becomes
sphere-like. As the tumour continues to grow, the perturbation starts to increase around time
t ≈ 0.4. The tumour begins to take on a flattened ellipse-like shape. Around time t ≈ 2.2 the
perturbation growth accelerates dramatically, and dimples form around time t ≈ 2.42. The
dimples deepen, and the tumour surface buckles inwards.
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Figure 5. Evolution of the basic tumour surface in the low-vascularization regime, for d = 2,
A = 0.5, G = 20 and initial tumour surface. Dotted lines: solution from linear analysis; solid:
solution from a nonlinear calculation with time step �t = 10−3 and a number of marker points
N = 1024, reset, after time t = 2.51 to �t = 10−4 and N = 2048. Reprinted from Cristini et al
J. Math. Biol. 46 202. Copyright © 2003 Springer. With kind permission of Springer Science and
Business Media.

The biological significance of the diffusional instability [129] is that the instability allows
the tumour to increase its surface area relative to its volume, thereby allowing the cells in
the tumour bulk greater access to nutrient. This in turn allows the tumour to overcome the
diffusional limitations on growth and to increase to larger sizes than would be possible if the
tumour were spherical. Thus, diffusional instability provides an additional pathway for tumour
invasion that does not require an additional nutrient source such as would be provided from
a newly developing vasculature through angiogenesis. These predictions of development of
shape instabilities are in agreement with experimental observations (e.g. [196, 198]).

2.3. Tumour growth in heterogeneous tissue

2.3.1. Overview. Microenvironmental inhomogeneities play a significant role in the growth
of a tumour [171, 263, 411, 466]. For example, hypoxic microenvironments induce tumour
and endothelial cells to upregulate HIF-1 target genes leading to the secretion of pro-
angiogenic factors, matrix degrading enzymes and decreased cell–cell and cell–matrix adhesion
[178, 306, 424]. In addition, hypoxic microenvironments affect the metabolism of tumour
cells leading to activation of the glycolytic pathway and acidosis in the microenvironment
[226, 228, 231]. The presence of different tumour and host tissues (e.g. grey/white matter in
the normal brain) and variations in the extracellular matrix also influence tumour progression
through chemical and physical interactions [561]. In addition, the microenvironment may
induce clonal diversity [308].
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Figure 6. Evolution of the basic tumour surface in the low-vascularization regime, A = 0.5,
G = 20 and initial tumour surface as defined in [129]. (a) t = 0, (b) t = 2.21, (c) t = 2.42,
(d) t = 2.668. Reprinted with permission from Li et al Discrete Contin. Dyn. Syst.—Ser. B 7 599.
Copyright © 2007 American Institute of Mathematical Sciences.

2.3.2. Hypoxic microenvironments. A key feature of the hypoxic tumour microenvironment is
the existence of oxygen gradients. These gradients may arise from inadequate vascularization,
exacerbated by disordered tumour-induced angiogenesis (see section 2.4). This may induce
necrosis. The basic model in section 2.2.2 was extended by Byrne and Chaplain [91] to
include necrosis. There have been many studies of the effects of necrosis on tumour growth.
See the review papers listed earlier. For example, Garner et al [222] incorporated necrosis
in a model of spherical tumour growth and used the conservation of energy to obtain scaling
laws for the growth of the tumour and necrotic core. In [348, 350, 351] a further extension
was introduced to study the effects of oxygen variation in the tumour microenvironment. In
this model, an avascular tumour is modelled to occupy volume �T(t) with boundary ∂�,
denoted by �, viable region �V and necrotic region �N where tumour cells die due to low
nutrient levels. The viable region is divided into a proliferating region �P where the nutrient
levels are high enough to permit cell proliferation and a quiescent/hypoxic region �Q where
nutrient levels are insufficient to sustain proliferation. The growing tumour also interacts
with the surrounding microenvironment in the host tissue; this region is denoted by �H. In
addition, equation (3) governing the distribution of oxygen (or any other vital cell substrate) is
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generalized to allow for non-constant diffusivity and variable uptake and natural decay. Using
the same non-dimensional scaling as before, this gives

0 = ∇ · (D∇n) − λn(x, n)n + λn
bulk (1 − n) B(x)χH, (20)

where λn is the uptake/decay rate. It is assumed that oxygen is uptaken at different rates in
the different domains of the tumour and the host tissue (�H). For example, the uptake may be
different in domains where the cells are proliferating �P or quiescent �Q. In addition, oxygen
may be degraded in the necrotic domain �N due to the presence of oxidizing agents [352].
These domains may actually be defined in terms of the oxygen concentration as in equation (21).
In equation (20), λn

bulk is the nutrient delivery rate from the pre-existing vasculature, B(x) is
the pre-existing vascular density and χH is the characteristic function of the host domain �H.
Normalized by the nutrient uptake in the proliferating tumour region, the uptake and decay
function and definitions of the domains are taken to be

λn(x, n) =




0 if x ∈ �H

1 if x ∈ �P = {x| 1 � n > np}
λn

Q if x ∈ �Q = {x| np � n > nN}
λn

N if x ∈ �N = {x| nN � n},
(21)

where np and nN are the nutrient thresholds for proliferation and necrosis, respectively. This
function reflects the fact that nutrient is uptaken much faster in the tumour than in the host
tissue (hence the relative uptake in �H is zero) and the fact that when cells necrose, they
release their cellular contents which are oxygen reactive [212, 318] and thus this effect on the
nutrient concentration can be modelled through the decay rate λn

N. Note that with this choice
of uptake/decay term, the nutrient equation is nonlinear.

Cells and ECM in the host tissue �H and viable tumour region �V are affected by a variety
of forces, each of which contributes to the cellular velocity field u. Proliferating tumour cells
in �V generate an internal (oncotic) mechanical pressure (hydrostatic stress) that also exerts
force on surrounding non-cancerous tissue in �H. Tumour, non-cancerous cells and ECM can
respond to pressure variations by overcoming cell–cell and cell–ECM adhesion and moving
within the ECM scaffolding of matrix proteins that provides structure to both tumour and host
tissue.

Using Darcy’s Law as a constitutive relation for the cell velocity in the host and tumour
domains, and a domain-dependent net cell-proliferation rate λp, the mechanical pressure is
given by

∇ · (µ∇P) =




0 if x ∈ �H

n − A if x ∈ �P

0 if x ∈ �Q

−GN if x ∈ �N,

(22)

where the right-hand side is λp. Note that the cellular mobility µ also measures permeability of
tissue to tumour cells. See [23, 95] for further motivation of this approach from the perspective
of mixture modelling. In the host domain, the non-dimensional net proliferation rate is assumed
negligible since tumour cells proliferate more rapidly or die at a lower rate than host cells. In the
proliferating domain, the proliferation rate is assumed to be linear in the oxygen concentration
and apoptosis is assumed to result in volume loss as in section 2.2.2. The parameter GN is the
non-dimensional rate of volume loss due to necrosis [348, 575]. Following [129] and others,
cell–cell adhesion forces are modelled in the tumour by generalizing the condition (7) and
introducing a Laplace-Young jump condition:

[P ] = G−1κ, x ∈ �, (23)
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where κ is the mean curvature and G = λM

λR
. It is also supposed that the pressure jump across

the necrotic interface is zero, which reflects the low cell–cell adhesion in the perinecrotic
region and the increased cellular mobility observed in hypoxic cells [75, 99, 265, 423, 424, 454].
The cell velocity is also assumed to be continuous across the tumour/host interface and the
boundary of the necrotic tumour domain. Cellular proliferation and death are in balance in the
far-field, i.e.

P ≡ P∞, x ∈ ∂(�T ∪ �H). (24)

2.3.3. Nonlinear results. In Macklin and Lowengrub [351], an accurate ghost-cell
[183, 244]/level-set [397] method was developed to solve the system described above. In this
approach, the tumour–host interface is described as the zero level-set of an auxiliary function
(level-set function). The equations are discretized on a Cartesian mesh and the stencil is
adapted by introducing ghost cells near the interface to achieve accurate results. This algorithm
is capable of describing complex morphologies evolving in heterogeneous domains. Jumps in
the normal derivative are discretized without smearing jumps in the tangential derivative. A new
adaptive solver for linear and nonlinear quasi-steady reaction–diffusion problems (NAGSI), an
adaptive normal vector discretization for interfaces in close contact, and an accurate discrete
approximation to the Heaviside function were introduced.

The effects of the tumour microenvironment on the morphology and growth patterns of
2D can be considered by modelling avascular tumours growing into piecewise homogeneous
tissues. Parameters in the model can be varied to represent these effects in a simplified fashion.
For example, oxygen gradients in the microenvironment can be created by varying the ratio of
oxygen diffusivities in the host domain �H and the tumour domain �T (the diffusivity in each
region is assumed to be uniform). The permeability of the host domain to the tumour cells can
be varied through the ratio of respective mobilities (also assumed to be uniform in each domain).
The actual situation can be more complex. For instance, when tumour cells are hypoxic, cellular
pathways that stimulate cell migration may be activated [178, 263, 306, 331, 424]. This may be
modelled by increasing the mobility µ as oxygen level decreases [352, 555] or as a chemotactic
response to oxygen gradients [198], see below and section 2.5.4.

Using the diffusion and mobility parameters as described above, the effects of the tumour
microenvironment on growth can be characterized through a morphology diagram as shown in
figure 7 [350]. Growth is simulated over a wide range of microenvironmental parameters (with
D and µ being the ratios of diffusion and mobility parameters in �H and �T) with G = 20;
GN = 1 and nN = 0.35, each with identical initial shape. The apoptosis parameter A = 0
because on the time scale considered the tumours apoptosis was assumed not to occur. Further,
the quiescent region here is not considered, i.e. nP = nN.

In figure 7, the shape of each tumour is plotted at time T = 20.0 (scaled with the mitosis
time ∼1 day so that this corresponds to approximately 20 days). In all figures, the black regions
denote �N where the tumour is necrotic, the grey regions show the viable tumour region �V,
and the white regions correspond to �H, which consists of the ECM, non-cancerous cells, and
any other material outside of the tumour.

On the horizontal axis, the nutrient diffusivity of the surrounding tissue is varied; as D

increases from left to right, the simulated microenvironment varies from nutrient poor (left,
hypoxic) to nutrient rich (right, normoxic). On the vertical axis, the mobility of the surrounding
material is varied; as µ increases from bottom to top, the microenvironment ranges from low
mobility (bottom) to high mobility (top). The greater the mobility µ, the greater the ability of
the external, non-cancerous tissue to respond to the pressure generated by the growing tumour
and the easier it is for tumour cells to invade the host tissue.
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Figure 7. Tumour morphological response to the microenvironment. The external tissue nutrient
diffusivity D increases from left to right and the external tissue mobility µ increases from bottom
to top. The shape of each tumour is plotted at time T = 20.0. Black regions denote �N where
the tumour is necrotic, the grey regions show the viable tumour region �V and the white regions
correspond to �H, which consists of the ECM, non-cancerous cells and any other material outside of
the tumour. Three major morphologies are observed: fragmenting growth (left), invasive fingering
(lower right), and compact/hollow (upper right). All tumours are plotted to the same scale, where
the indicated length is 25L ≈ 0.5 cm. Reprinted with permission from Macklin and Lowengrub
2007 J. Theor. Biol. 245 687. Copyright © Elsevier.

Three distinct tumour morphologies were observed through this range of simulated tissue
types. In the nutrient-poor regime on the left side of the diagram, the growing tumours
break into fragments so as to optimize the number of tumour cells with access to nutrient.
The nutrient-rich, low-mobility regime in the bottom right of the morphology diagram is
characterized by invasive fingering, where buds develop on the tumour boundary and elongate.
This increases the surface area to volume ratio and enables interior tumour cells to have greater
access to nutrient (which is widely available in the microenvironment). The nutrient-rich, high-
mobility regime in the top right of the diagram exhibits compact/hollow growth, where the
tumours tend to grow into spheroids and typically form abscesses filled with non-cancerous
tissue, cellular debris and fluid, similar to a necrotic core. These morphologies are similar to
those observed experimentally in vitro (e.g. [194, 350]).

Tumour morphologies in figure 7 are qualitatively similar when recomputed with different
genetic/phenotypic characteristics (modelled by G, GN and σN), although large changes in
the genetic/phenotypic parameter values can shift the morphology from one type to another.
Thus, a tumour’s morphology seems to critically depend upon the characteristics of the
microenvironment.

Tumours growing into nutrient-poor microenvironments demonstrate repeated fragmen-
tation through a wide range of mitosis rates (governed by the parameter G) and necrotic tissue
degradation rates (GN). Tumour fragmentation was observed in the simulations in almost all
cases, particularly for fast-proliferating, aggressive tumours with higher values of G. Similarly,
increasing the rate of necrotic tissue degradation (GN) tends to destabilize the tumour, also
leading to an increased rate of fragmentation. However, this effect is highly nonlinear: if GN is
large relative to G, then proliferation, necrosis and cellular adhesion can balance to maintain
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spheroids and prevent further tumour fragmentation. Note that for sufficiently low levels of
tumour aggressiveness (e.g., G = 0.10), tumour instability decreases until the steady-state
configuration is a tumour spheroid, as predicted in [129] for non-necrotic tumours.

The finding that tumour morphology in the nutrient-poor regime may primarily depend
upon the tumour microenvironment and not upon the tumour genetic/phenotypic characteristics
has important implications for cancer treatment. In anti-angiogenic therapy, drugs are supplied
to inhibit angiogenesis and the vascularization of the growing tumour and the host tissue in the
microenvironment. Thus, anti-angiogenic treatment may result in hypoxia and heterogeneous
nutrient delivery, effectively creating a nutrient-poor environment for the tumour. The resulting
nutrient-poor microenvironment may induce tumour fragmentation, recurrence and metastasis.
This is in fact observed in experiments, e.g. [57, 327]. This result is consistent with the findings
of [126] who also found that anti-invasive therapy (increased adhesion, decreased mobility)
may be used successfully as adjuvant to anti-angiogenic therapy.

Complex tissue. The approach described in the previous section can be used to simulate
tumour growth in a complex tissue. In figure 8, tumour growth in a heterogeneous domain
that mimics brain tissue is considered (Macklin and Lowengrub [351]). In the white region
(right side of the domain), µ = 0.0001, D = 0.0001 and B = 0 (the pre-existing blood vessel
density), which models a rigid material such as the skull. In the black regions, µ = 10, D = 1
and B = 0, which models the cerebrospinal fluid. The light and dark grey regions model white
and grey brain matter with regions µ = 1.5, D = 1 and B = 1 in the white and µ = 0.5,
D = 1 and B = 1 in the dark grey. The tumour is denoted by a white thin boundary in the
middle right of the frame. The proliferating, quiescent and necrotic regions in the tumour are
coloured white, grey and black, respectively.

The simulations are from time t = 0 to t = 60 (approximately 45–90 days). The solution
is plotted every 10 time units. The tumour grows rapidly until the nutrient level drops below
nP = 0.30, at which time a large portion of the tumour becomes hypoxic and quiescent. The
tumour continues to grow at a slower rate until the interior of the tumour becomes necrotic
(see t = 10.0). This causes non-uniform volume loss within the tumour and contributes to
morphological instability. Note that because the biomechanical responsiveness is continuous
across the tumour boundary and the microenvironment has a moderate nutrient gradient, this
simulation corresponds to the border between the invasive, fingering growth regime and the
fragmenting growth regime that was described earlier. Additional effects can be seen that were
not observed before, however.

As the tumour grows out of the biomechanically permissive tissue (light grey; µ = 1.5)
and into the biomechanically resistant tissue (dark grey; µ = 0.5), its rate of invasion into the
tissue slows (see T = 20.0). This results in preferential growth into the permissive (light grey)
material, a trend which can be clearly seen from t = 30.0 onwards. When the tumour grows
through the resistant tissue (dark grey) and reaches the fluid (black) (t = 40.0), the tumour
experiences a sudden drop in biomechanical resistance to growth. As a result, the tumour grows
rapidly and preferentially in the 1/2 mm fluid structures that separate the tissue (t = 50.0–
60.0). Such growth patterns are not observed when simulating homogeneous tissues. Other
observed differences are due to the treatment of quiescent (hypoxic) tumour cells. Regions
that had previously been classified as necrotic (in [347–350]) are now treated as quiescent.
As a result, tumour volume loss is reduced, and in particular, this may result in tumours with
large hypoxic regions and little or no viable rim. Had these regions been treated as necrotic,
the invasive fingers would have been thinner and the tumour may have fragmented. Therefore,
the separate treatment of the hypoxic regions can have a significant impact on the details of
invasive tumour morphologies.
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Figure 8. Tumour growth in heterogeneous tissue. Simulation from time t = 0.0 days (top left)
to t = 60.0 days (bottom right) in 10 day increments. White band on the right of each frame
models a rigid material such as the skull; black denotes an incompressible fluid (e.g. cerebrospinal
fluid); light and dark grey regions represent tissues of differing biomechanical properties (e.g. white
and grey matter). Tumour tissue is shown growing in the middle right with viable (outer layer,
white), hypoxic (middle layer, grey), and necrotic (core, black) regions. Reprinted with permission
from Macklin and Lowengrub J. Sci. Comput. 35 293–4. Copyright © 2008 Springer (with kind
permission of Springer Science and Business Media).

Extracellular matrix, taxis and invasion. The effects of extracellular matrix on tumour
invasion were modelled by Anderson et al [29] by introducing a non-diffusing concentration
field of bound matrix macromolecules E. The tumour cells degrade and remodel the ECM
and move in response to gradients of E (haptotaxis). Along the same lines, Habib et al [254]
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employed a model describing chemotactic (motion in up gradients of soluble chemokines) and
haptotactic cell behaviour, also without considering cell adhesion, and simulated tumour cell
motility guided by the principle of least resistance, most permission and highest attraction.
Earlier work by McElwain and Pettet [369] showed that in chemotaxis of cells in symmetric
multicell spheroids may act against cell-motion induced by pressure gradients. Castro et al
[103] developed a mathematical model of chemotactically directed tumour growth showing
that heterotype chemotaxis provides an instability mechanism leading to the onset of tumour
invasion, while homotype chemotaxis enhances the mean speed of the tumour surface, and
tumour cell proliferation alone cannot generate the invasive branching observed experimentally.
Khain et al [314] used a reaction–diffusion model to simulate chemotaxis and random cell
motion of glioma. In agreement with recent experiments (Stein et al , unpublished results),
they find that an outer invasive zone consisting of migrating cells grows faster than a higher-
density inner region characterized by more proliferative cells. Their model predicts, however,
that this is a transient state and the growth velocities of each region tend to the same value at
long times. When the ratio of diffusion and cell-diffusion coefficients exceeds a critical value,
Khain and Sander [311] find that symmetric fronts become unstable leading to instabilities and
fingering as observed in experiments (e.g. [149, 152]). Chaplain and Lolas [112] developed
a continuum model of ECM degradation by a particular matrix degrading enzyme (urokinase
plasminogen) and studied the resulting tumour progression. Marchant et al [363] developed a
model for tumour invasion and investigated the stability of travelling wave tumour–host fronts.
In particular, the model predicts a biphasic dependence of the travelling wave speed with the
density of the surrounding host tissue.

Propagating tumour–host wave fronts have also been investigated in the context of linear
diffusional models of glioma tumour cells (e.g. Cruywagen et al [130], Woodward et al [557],
Burgess et al [80], Swanson et al [508–512] and Jbabdi et al [293]). In particular, the effect of
anisotropy on the diffusional propagation of glioma cell fronts has been investigated by Jbabdi
et al (2005). Anisotropy may arise, for example, due to the presence of fibre tracks in the
brain along which cells may preferentially migrate. Using diffusion tensor imaging (DTI) data
of the brain, Jbabdi et al developed an anisotropic model for the cell-diffusion tensor. They
find that the best fit between simulation results and clinical data occurs when the anisotropy
of the cell-diffusion tensor is larger than the water diffusion tensor (which is directly imaged
by DTI. Very recently, Swanson et al (2008) used patient data to parametrize the diffusion
model in terms of the ratio D/ρ, where D is the net rate of dispersal and ρ is the net rate of
proliferation. Swanson et al [512] then used images of untreated glioblastoma to provide initial
conditions for the model and simulations of the subsequent growth were performed with and
without resection (removal of the bulk of the tumour). A comparison between the actual and
simulated tumours shows that the model is capable of accurately predicting patient survival (in
the simulation, patient mortality is assumed to occur when the tumour radius is approximately
3 cm).

Using Lotka–Volterra type reaction–diffusion equations [387] that describe interactions
between the tumour and host cells, Gatenby et al [229] assumed that the tumour–host interface
is a travelling wave front and used an inverse problem approach to infer constraints on key
biological quantities which appear as parameters in the model equations. In recent work, Zhu
et al [578] proved the existence of travelling wave solutions to a system of equations originally
proposed by Sherratt [479] and used later by Chaplain and Sherratt [480]. In this approach,
nonlinear diffusion is introduced to model contact inhibition between tumour and host
tissues.

Boushaba et al [71] developed a two-compartment mathematical model to describe the
suppression of secondary tumours nearby a large primary tumour. In their model, each tumour
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is assumed to stay in its own compartment and the compartments couple only through flux
boundary conditions for the concentrations of growth and inhibitory factors expressed by the
tumours, which diffuse through the extracellular matrix. Thus, reaction–diffusion equations
describing the chemical species and tumour cell growth are posed in each compartment and
flux boundary conditions are posed for the diffusing species. When a small secondary tumour
is sufficiently close to the primary tumour, the inhibitory factor is found to suppress its growth.
Removal of the primary tumour, and thus the source of the inhibitory factor, may result in
the growth of the secondary tumour. If the secondary tumour is far from the primary tumour,
the limited diffusion of the inhibitor prevents growth suppression and the secondary tumour is
found to grow independently from the primary tumour.

Armstrong et al [39] recently constructed a continuous mathematical model of cell–cell
adhesion by using non-local (integral) terms in a system of partial differential equations where
cells use a so-called ‘sensing radius’ to detect their environment. Tindall and Please [520]
analysed a mathematical model of avascular tumour spheroid growth that accounted for cell-
cycle dynamics and chemotaxis-driven cell movement. Gerisch and Chaplain [233] applied a
version of the model originally developed by Armstrong et al to formulate a continuum model
of tumour cell invasion. This approach was further investigated by Szymanska et al [513].
In [352], Macklin and Lowengrub developed a model to account for heterogeneous response
to pressure and ECM adhesion gradients through non-constant cell mobility that depends on
E and by introducing a haptotaxis velocity proportional to the gradient of E. For example, in
equation (5) the cell velocity may be extended to read

u = −µ(E)∇P + χE∇E. (25)

Chemotaxis up a gradient of a soluble chemokine can be incorporated analogously (see also
section 2.5.2). It is found that the morphology of the tumour is affected by heterogeneity in the
ECM concentration, e.g. widespread variation in ECM density can result in the development
of complex tumour morphologies. This is consistent with earlier findings by Anderson et al
(2000). The ECM distribution also affects angiogenesis and vascular tumour growth (see
section 2.4). Recently, Ambrosi [14] analysed cellular traction using an inverse problem
approach. This was later used by Ambrosi et al [16] who applied a system of coupled elliptic
partial differential equations to calculate the force field per unit surface generated by tumour
cells on a polyacrylamide substrate. In the latter paper, the adjoint method is used. The
shear stress thus obtained by numerical integration provided quantitative insight of the traction
field and could enable study of the spatial pattern of force per unit surface generated in cell
motion. Chauviere et al [117–119] developed models for cell migration due to chemotaxis and
haptotaxis in anisotropic and heterogeneous tissues. In addition, using a growing and resting
population model of cell migration was introduced to model the growth of glioma.

In recent work, Szymanska et al [514] developed a reaction–diffusion model to investigate
the effect of heat shock proteins (HSPs) on cancer cell migration and solid tumour invasion.
In vitro experiments were also performed. Cells that are placed in stressful conditions, e.g.
elevated temperature and oxidative stress, tend to upregulate HSPs. HSPs perform multiple
functions related to folding proteins into an appropriate shape and their upregulation in tumours
is observed (e.g. [297]). HSPs are believed to act as a chaperone for many proteins linked
to cancer progression including matrix-degrading enzymes (MDEs), and proteins involved in
cytoskeleton remodelling. In experiments, inhibition of certain HSPs is found to reduce the
rate of cancer invasion [180]. Szymanska et al find that different mechanisms of HSP inhibition
lead to different patterns of tumour invasion. Comparing these results with experiments
suggests that HSP inhibition may decrease the cell motility without affecting the MDE
production rate.
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The effects of ECM and cell motility have also been incorporated in discrete tumour
models (see section 3).

Acidosis. In hypoxic environments, tumour cells rely on anaerobic metabolism of glucose to
lactic acid, even though this is much less efficient than aerobic metabolism. See Gatenby
and Gawlinski [225, 227], Gatenby and Gillies [228] and Gillies et al [241]. This can
occur even under normoxic conditions. Although this is inefficient, it gives tumour cells a
proliferative advantage over the host because tumour cells are typically able to survive in
acidic environments that are toxic to the host cells. The first mathematical models used to
study the effect of the glycolytic phenotype on tumour invasion potential were developed by
Gatenby and Gawlinski [224] using continuum partial differential equations. In particular, a
reaction–diffusion equation is introduced for the excess H+ ion concentration L, which assumes
that excess ions are produced at a rate proportional to the tumour cell density and may diffuse
and be reabsorbed:

∂L

∂t
= rNV − dL + DL∇2L, (26)

where r is the acid production rate, NV is the tumour cell density, d is the reabsorption rate
and DL is the H+ ion diffusion coefficient. Assuming as above that the tumour cell density
is a constant, then NV is proportional to the characteristic function of the domain �V. The
presence of acid in the microenvironment is assumed to cause death of both host and tumour
cells, although at different rates. In the framework of the model described above, this can
be introduced by appropriately modifying the tumour apoptosis parameter A to be dependent
on L, and, analogously, introducing an apoptosis parameter for the host tissue. Relating L

to the pH, Gatenby and Gawlinski [224] found that, consistent with experiments, the model
predicts that gradients of acid develop in the microenvironment, which can trigger a transition
to invasion. Further, an acellular gap may appear between the tumour and host tissues, as
observed experimentally by Gatenby et al [226].

Smallbone et al [488] extended this model to incorporate a simple model of tumour
vasculature. The vasculature is assumed to be a sink for H+ ions, which is found to prevent self-
acidosis of tumours, thus suggesting that a possible treatment strategy to halt tumour growth is
to introduce systemic acidosis. Gatenby et al [226] further extended the model to incorporate
an extracellular matrix, which is degraded at the tumour–host interface by proteolytic enzymes
released by acid-resistant tumour cells. This enables tumour cells to invade the damaged host
tissue, consistent with experimental observations. In [487, 489] Smallbone et al incorporated
the effect of tumour cell quiescence in the model. Since quiescent cells are less metabolically
active, they are assumed to produce less acid than proliferating tumour cells. This may occur
cyclically as tumour cells alternate from quiescent to proliferative states. The model is found
to provide a description that better matches experimentally observed features of the tumour
host interface, such as the size of the acellular gap between the tumour and host. There has
also been modelling work to describe acidosis using discrete models (see section 3).

Clonal diversity. Heterogeneity in the tumour microenvironment may select for tumour
cells that have a competitive advantage even if the underlying mutation rate is high, e.g.
Nagy [389]. Gatenby and Frieden [223] demonstrated this using information theory and
showed that this is required in order to prevent the accumulation of genetic malfunctions.
Gatenby and Vincent [231] developed a model using population biology and game theory to
describe competing clonal populations that interact with one another and the microenvironment.
The model further confirms that tumour invasion requires a certain degree of genetic stability.
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In particular, it is found that malignant tumours are more homogeneous genetically than
their pre-malignant counterparts. Gillies and Gatenby [240] went on to propose that the
evolutionary dynamics governing the microenvironment selection forces could be analysed
using an inverse problem approach. In particular, the evolution dynamics can be inferred from
the typical phenotypic traits of the tumour. This analysis suggests that adaptation to hypoxia
and acidosis must be a major component of the carcinogenic sequence. It should also be noted
that therapeutic intervention can also exert selection pressure on a multi-clonal tumour cell
population.

Internal stress. Experiments demonstrate that mechanical stress may significantly influence
the growth of solid tumours (e.g. [268]). The mathematical modelling of residual stress
development in growing tumours was recently reviewed by Araujo and McElwain [34], Roose
et al [456] and Tracqui [525]. Briefly, the study of Shannon and Rubinsky [477] showed that
in a linear-elastic description of a growing tissue with spherical geometry, such as a tumour
spheroid in vitro, residual stresses are induced by any spatial variation in the growth process.
Nonlinear elastic models were employed by Chaplain and Sleeman [114] to classify solid
tumours and by Chen et al [120] to investigate the influence of the growth-induced stress in
the medium surrounding a tumour spheroid on the growth of the tumour. The growth rate
and equilibrium size of the tumour were found to decrease as the stiffness of the surrounding
medium increased consistent with experiments (e.g. [268]).

Jones et al [298] considered the continuous nature of the growth process instead of a fixed
growth strain distribution, extending the work of Shannon and Rubinsky. The dimensionless
model equations from Jones et al (2000) are

0 = ∇2n − n, (27)

∇ · v = n − A, (28)

∇ · σ = 0, (29)
1

2
(∇v + ∇vT ) = 1

3
(∇ · v)I +

1

2

(
D

Dt
(3σ − T r(σ )I) + 3(ω · σ − σ · ω)

)
, (30)

where the first equation describes nutrient diffusion/uptake, the second describes the rate of
volume growth, the third equation describes mechanical equilibrium where σ(x, t) is the
stress tensor. The last equation is a differentiated version of the stress–strain relation with
ω = − 1

2 (∇v − ∇vT ) and I the identity tensor. The Jaumann derivative has been used to
maintain frame-indifference (D/Dt = ∂t +v ·∇ represents the material derivative). As before,
n(x, t) is nutrient concentration and v(x, t) is cell velocity; the tumour–host interface � is
advected with the velocity v. At the tumour/host interface traction-free boundary conditions
are applied (although one could also apply a normal stress on the boundary to mimic the effect
of a gel containing the tumour).

One of the difficulties with the model described above is that the stress does not evolve
to a steady-state distribution even when the tumour reaches a steady shape. Incorporating
mechanisms of stress relaxation can allow steady-state stress distributions to be achieved,
however. This can be done by using poroelasticity models (see Roose et al [457]), by
incorporating anisotropy (see Araujo and McElwain [35, 38]) or viscoelasticity (e.g. MacArthur
and Please [346]). The effect of solid stress on the vasculature was investigated by
Sarntinoranont et al [468] using the poroelastic model and by Araujo and McElwain [36]
using the anisotropic model.

A significant difficulty in using the approach described above is that it relies on frame-
invariant differentiation of the stress–strain relation. However, as Ambrosi and Preziosi [24]
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point out, the strain is not frame invariant [356] and thus the Jaumann derivative is inappropriate.
Instead, the use of accretive forces (e.g., [13, 19–22, 24, 221, 279, 280, 320, 321, 340]) is
required to derive the equations for growth in a consistent manner from a reference
configuration. Interestingly, as pointed out by Ambrosi and Preziosi [24], the above models
(with the convection terms dropped) may be obtained from a small deformation limit of the
constitutive laws derived in [24] that take into account accretive forces.

In a single-phase tumour model, Ambrosi and Mollica [21, 22] utilized a nonlinear
approach with accretive forces to analyse the role of mechanical stress on the growth of a tumour
spheroid. A mechanical description was used where the volumetric growth and mechanical
responses were divided into two separate contributions. In particular, the deformation tensor
F is decomposed multiplicatively to account for the contributions of pure growth and elastic
deformation:

F = FrG, (31)

where Fr describes the deformation due to cell reorganization and stress relaxation after growth,
G describes the deformation due to growth. A Blatz–Ko constitutive equation [67] was used
to relate the stress and the elastic part of the deformation Fr. The growth tensor was taken to
be G = gI. Ambrosi and Mollica [22] derived the following equations for a tumour spheroid

ρ = ρ0J
−1
r , (32)

∇ ·
(
F −1∇ ·

(
Jn

(
F −1

)T
))

= (n − A)ρJ, (33)

∇ · P = 0, (34)

ġ = g

3
(n − A) , (35)

where ρ is the tumour density, ρ0 is the tumour density at time t = 0, Jr = det(Fr), J = det(F )

and P is the first Piola–Kirkhoff stress tensor obtained from the Blatz–Ko constitutive law.
The derivatives in the above are with respect to the reference configuration, and the overdot
denotes the time derivative. The cell velocity is v = u̇, where u is the displacement vector.
Normal stress boundary conditions may be applied at the tumour boundary, or the tumour may
be embedded in an elastic matrix material.

Ambrosi and Mollica [22] applied this system to describe homogeneous growth inside
a rigid cylinder, modelling ductal carcinoma, and to the growth of a tumour spheroid with
non-homogeneous diffusion of nutrients, which generates residual stresses because the non-
uniform distribution of nutrients leads to inhomogeneous growth. In later work [19], these
authors provided a qualitative analysis of the stress-modulated growth of a continuum body
as predicted by equations that satisfy an a priori stated dissipation principle. Accretive
forces [156] were re-interpreted as a homeostatic value of the Eshelby stress, coinciding with
the classical biomechanical concept of homeostatic stress in the case of infinitesimal strain.

The previously reviewed models were all in one-dimension, i.e. a spherically symmetric
geometry. A general stability analysis of nonlinear elastic models to asymmetric perturbations
was performed by Ben Amar and Goriely [13] in higher dimensions. The important role of
residual stress was established by showing that a spherical shell without any external loading
could become spontaneously unstable under large anisotropic growth.

In recent work, Lloyd et al [343] developed a finite-element based method to simulate
the elastic response of tissue during tumour growth in 2D. In particular, deformations are
induced by a prescribed strain determined from cell proliferation. However, the accumulation
of stress is neglected and it is assumed that residual stress dissipates completely, which would
be consistent with an elasto-plastic growth law.
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Figure 9. Schematic (not to scale) of a necrotic tumour in transition from avascular to vascular
growth. Disjoint regions �H, �V and �N represent healthy tissue viable tumoural tissue and
necrotic core domains, respectively. Tumour region is �T = �V ∪ �N. �∞ is far-field boundary,
� is tumour interface and �N is necrotic rim. Capillaries are defined on �C. For illustration,
nutrient concentration σ(x) (labelled n(x) in the plot), TAF concentration c(x) and endothelial cell
density e(x) are plotted along horizontal dashed line. Reprinted with permission from Zheng et al
Bull. Math. Biol. 67 215. Copyright © 2005 Springer (with kind permission of Springer Science
and Business Media).

A number of other models of stress effects in tumours have been developed in the context
of multiphase mixture models; see section 2.5.

2.4. Tumour growth and neovascularization

2.4.1. Background. To transition from the avascular to the vascular phase of growth, a tumour
must induce new blood vessels to sprout from the existing vascular network and grow towards
the tumour, eventually penetrating it. This process, known as tumour-induced angiogenesis,
is a critical milestone in the development of invasive and malignant cancer [255]. The process
is thought to start when a small avascular tumour exceeds a critical size greater than can be
sustained by the normal tissue vasculature [101]. Accordingly, tumour cells become hypoxic
and secrete diffusible chemical factors, such as the vascular endothelial cell growth factor
(VEGF). The factors diffuse into the host microenvironment and bind to specific membrane
receptors on the (vascular) endothelial cells (ECs) that line existing blood vessels. This
activates migration of ECs, which respond by degrading the basement membrane surrounding
the existing vessel to form sprouts. The ECs then proliferate and migrate towards the tumour.
Migration is mediated by the chemotactic response to VEGF and other pro-angiogenic factors,
by proteolytic enzymes that degrade the ECM providing space for the cells to move, and a
haptotactic response to variable cell–matrix adhesion. As the ECs proliferate through the ECM,
they form tubular structures which fuse (anastomose) to form loops. Eventually blood flows
through the neovascular network providing the tumour and host microenvironment with an
increased, although inefficiently delivered, supply of cell substrates. This process is illustrated
in figure 9.
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Tumour growth and angiogenesis are coupled in that hypoxic tumour cells release
a net balance of pro-angiogenic factors that attract the ECs and incite the neovascular
network to approach the tumour. This creates additional sources of cell substrates in the
microenvironment. The tumour responds by upregulating cell proliferation in regions where
nutrient is increased. The additional oxygen and nutrient affect the hypoxic tumour regions,
which in turn downregulates the net release of pro-angiogenic factors and hence affects the
formation of the neovascular network.

In addition to heterogeneous blood flow, a neovascular network contends with pressure
variation introduced by increased tumour cell proliferation and migration. Normally, the
network responds by remodelling itself. Compared with vessel networks formed during
normal biological processes during development and wound healing, however, tumour-induced
neovascular networks may become leaky and inefficient, producing immature and tortuous
vessels [258], which leads to increased flow resistance and ultimately to heterogeneous supply
of cell substrates in the tumour microenvironment [209].

2.4.2. Modelling of angiogenesis. Mathematical models of tumour-induced angiogenesis
date to the work of Balding and McElwain [47]. Both continuum, fully discrete, composite
continuum–discrete and hybrid continuum–discrete mathematical models have been developed
(see recent reviews [15, 113, 299, 332, 333, 362, 406, 410, 427, 429]). In most models, the
coupling between tumour growth and angiogenesis is simplified in that one of the two processes
is static while the other is dynamic. There are few models in which both processes are coupled
dynamically.

Models that focus on the angiogenic response have taken two approaches. One approach
focuses on blood vessel densities rather than vessel morphology, as in continuum partial
differential equations. See for example Byrne and Chaplain [90], Orme and Chaplain [396],
De Angelis and Preziosi [146], Sansone et al [467], Levine et al [334, 335, 337], Hogea
et al [272], Peterson et al [413], Stamper et al [491], Jain et al [288] and Addison-Smith et al [9].
In these approaches, continuum conservation laws are introduced to describe the dynamics of
the vessel densities and angiogenic factors. These models do not provide morphological
or blood flow information about the vasculature. In the context of vasculogenesis in vitro,
biomechanical and biochemical models have been developed that account for cell–ECM
interactions and chemotactic response and are capable of describing the morphology of
the vasculature. In these models, the network morphology emerges, roughly speaking,
from a homogeneous distribution through a type of phase transition. See, for example,
[17, 125, 217, 276, 329, 358, 386, 392, 475, 524] for continuum models and [373, 374, 375] for
discrete models.

The other approach represents vessels as line segments, continuous curves, interconnected
lattice patterns or collections of individual endothelial cells. Mechanisms have been modelled
such as vessel sprout branching and anastomosis, as well as vascular endothelial cell activation,
proliferation and migration via chemotaxis up gradients of tumour angiogenic factors (e.g.
VEGF), haptotaxis up gradients of ECM-bound chemokines (e.g. fibronectin) and proteolysis
of the ECM. See, for example, Stokes and Lauffenberger [497], Anderson and Chaplain [28],
Tong and Yuan [522], Plank and Sleeman [417, 418], Sun et al [502, 503], Kevrekidis et al
[310], Bauer et al [51], Milde et al [379] and Capasso and Morale [100]. Blood flow and
network remodelling have also been simulated (e.g. Pries et al [437], McDougall et al [367],
Stephanou et al [494, 495], McDougall et al [366], Wu et al [559], Zhao et al [574], Sun and
Munn [501] and Pries and Secomb [435]). In addition, models of tumour growth in static
network topologies have been simulated (e.g. Alarcón et al [10], Betteridge et al [66]) and
multiscale models of fluid transport in tumour have also been developed (Chapman et al [116]).
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The first model in which tumour growth is fully coupled with tumour-induced angiogenesis
for an arbitrary network topology was presented in Zheng et al [575]. This was modelled
in 2D using a version of the continuum–discrete model of Anderson and Chaplain [28]
coupled to the non-symmetric tumour growth model of Cristini et al [129]. This approach is
discussed in further detail below. Later, in the context of discrete cell-based systems, models
of angiogenesis and vascular tumour growth were also implemented, see, for example, Gevertz
and Torquato [238], Bartha and Rieger [50], Bauer et al [51] and Scislo and Dzwinel [547]. The
effects of blood flow through the neovascular network on tumour growth were also recently
considered in Alarcón et al [11], Bartha and Rieger (2006), Lee et al [330], Welter [548]
and Owen et al [399] using cellular automaton models for tumour growth combined with
dynamic network models for the vasculature. The effects of an arterio-venous network were
considered in Welter et al [549]. Very recently, Macklin et al [352], extended the model
of Zheng et al (2005) and incorporated a version of the dynamic model of tumour-induced
angiogenesis developed by McDougall et al [366] to explicitly analyse the effects of blood flow
and vessel remodelling. In other recent work, Lloyd et al [342] simulated the vascular growth
of a 2D tumour by coupling models for angiogenesis, flow through the developing neovascular
network and network remodelling with an elastic tumour growth model they developed earlier
(Lloyd et al [343]). In 3D, vascular tumour growth has been studied using a mixture model
and lattice-free description of tumour-induced angiogenesis (Frieboes et al [193] and Bearer
et al [55]).

Basic angiogenesis model. A basic angiogenesis model can be constructed [575] based on that
of Anderson and Chaplain [28] with some additions taken from Paweletz and Knieriem [409],
Paku [402], Chaplain and Stuart ( [115]) and McDougall et al [367]. The model of Anderson
and Chaplain [28] uses a composite continuum/discrete approach with the ability to follow the
motion of individual endothelial cells at the capillary tips and control important processes such
as migration, proliferation, branching and anastomosis using a discrete random walk algorithm.
Cell substrates such as tumour angiogenic factors and ECM are described using continuum
fields. Their objective was to replicate angiogenesis as observed in the experimental ‘rabbit
eye model’ [242], where a tumour is implanted in the cornea, thus inducing angiogenesis that
can be readily observed (since the cornea is normally avascular). This is artificial because
most tissue in the body is normally well vascularized.

Accordingly, the following field variables were introduced: [28]

– concentration of tumour angiogenic factor (TAF, e.g. vascular endothelial cell growth
factor VEGF) c

– concentration of matrix-degrading enzymes (MDE) m

– endothelial cell density (ECD) e

– density of ECM (e.g. matrix macromolecule fibronectin) f .

Once a tumour cell senses that the nutrient level has dropped below a critical threshold,
the cell releases diffusible tumour angiogenic factors (TAFs). TAF may be described through
a reaction–diffusion equation with a point or line boundary condition at the necrotic/viable
tumour cell interface. The TAF molecules are much smaller than cells and diffuse quickly
through the extracellular spaces. As a result, a quasi-steady reaction–diffusion equation can
be assumed for the non-dimensional concentration T (x, t) of TAF [352]

0 = ∇ · (DT∇T ) − λ
T

decayT − (λ
T

bindingT )1sprout tips + λT
prod., (36)

where DT = DT is the diffusion coefficient, 1sprout tips is the characteristic function of the sprout

tips, λ
T

prod., λ
T

decay, λ
T

binding denote the non-dimensional production, natural decay and binding
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rates of TAF, and λT
prod is the production rate of TAF by the tissue (see equation (42)). In the

far-field at the boundary of the computational domain, zero Neumann boundary conditions
∂T /∂n = 0 may be taken.

A primary component of the extracellular matrix is fibronectin, a long, non-diffusible
binding molecule. ECs produce, degrade and attach to these molecules during their migration
towards the tumour. The concentration of fibronectin f (x, t) satisfies [28]

∂f

∂t
= ηpe − ηmf m, (37)

where ηp is rate of production of fibronectin by ECs and ηm is the rate of degradation of
fibronectin by MDEs [575]. The MDE concentration, m, satisfies

∂m

∂t
= Dm�m + λ̄m

prod.(1 − m)1�V + λ̄m
spr.prod.1sprout tips − λ̄m

decaym, (38)

where the terms on the right-hand side represent diffusion (MDEs diffuse slowly and so the
quasi-steady approximation is not appropriate), production of MDE by viable tumour cells and
sprout tips and natural decay of MDE, respectively.

While ECs are comparable in size to host cells and tumour cells, it may be assumed [575]
that there are not enough ECs to modify the cell velocity u. The ratio of endothelial to tissue
cells is of the order 1/50 or 1/100 [82].

At the continuum level, the density of endothelial cells obeys a reaction–diffusion–
convection equation. The problem is convection-dominated, with primary source of convection
driven by chemotaxis and haptotaxis of endothelial cells in response to TAF and ECM
(fibronectin) concentrations, respectively. In addition, the ECs may also be affected by the cell
velocity. At the continuum level, the density e(x, t) of ECs, which is related to the probability
of finding the tip of a capillary at that location and time, obeys a convection–reaction–diffusion
equation in �H and �V [575]:

∂e

∂t
= De∇2e − ∇ ·

(( χC

1 + αc
∇c + χf ∇f + χuu

)
e
)

−ρDe + ρpe(1 − e)H(c − c∗) − ρNχ�Ne (39)

where De is the EC diffusion coefficient, χc, χf are chemotaxis and haptotaxis coefficients,
respectively, χu and α are dimensionless coefficients and H is the Heaviside function. The
parameter χu measures the degree to which the capillaries are influenced by the cell velocity.
Further, c∗ is a concentration of TAF above which proliferation occurs, ρD , ρp, and ρN are
rates of natural degradation, production and necrosis of ECs, respectively.

In the original work of Anderson and Chaplain [28], the model for motion of capillary
sprout tips comprised continuum and discrete components. Equations (36), (37) and (39)
constitute the continuum component. The discrete component was derived from equation (39)
under the assumption that growth of the capillary is determined by the biased random migration
(random walk) of a single endothelial cell at the sprout-tip. In particular, it was assumed that
there is a trail of ECs that follow the sprout-tip. In later work, McDougall et al [366] omit the
continuum EC equation (39) and simply use the discrete approach. In the discrete algorithm,
probabilities are generated from a finite-difference approximation that describe the tendency
of the tip endothelial cell to migrate and proliferate on a Cartesian lattice. In addition, capillary
branching and anastomosis are incorporated. The entire capillary may be convected by the
external cell velocity using the kinematic condition [575]

dx

dt
= µCu, (40)



Invited Article R33

where x is the position on the capillary and µC is the capillary mobility [575]. As the vessel
network becomes more established in time, the capillaries mature into larger vessels and
become more rigid, which can be accounted by decreasing µC.

Alternative and related approaches have also been developed. Plank and Sleeman
[417, 418] and Plank et al [419] considered lattice-based and lattice-free reinforced random
walk models of angiogenesis. Sun et al [502, 503]) coupled deterministic models of ECs
and vessels at the cell-scale with partial differential equation models of chemical factors at
the tissue-scale. Kevrekidis et al [310] and Whitaker et al [551] incorporated the effects
of inhibitors, following earlier work by Levine [337], in continuum–discrete models of
angiogenesis. Bauer et al [51] modelled angiogenesis using the Graner–Glazier–Hogeweg
(GGH) framework of cell-level modelling (see section 3). Milde et al [379] incorporated
the effects of both matrix-bound and soluble growth factors in a three-dimensional model of
angiogenesis. More recently, Capasso and Morale [100] developed a multiscale framework for
modelling angiogenesis that couples discrete models with stochastic effects at the cell-level
and coarse-grained partial differential equation models at the tissue scale.

The flow in the neovascular network and its effects on network remodelling have been
explicitly simulated using network models by Pries et al [436], Pries et al [432, 433]. Following
this work, McDougall et al [367] extended the basic angiogenesis model above by incorporating
blood flow by treating the network as a series of straight, rigid cylindrical capillaries that
join adjacent nodes. Blood flow was modelled through the cylindrical vascular network by
representing the elemental flow-rate in each segment with Poiseuille’s Law, which describes
flow rate as a function of capillary lumen, fluid viscosity, capillary length and pressure drop.
Stephanou et al [494] extended this model to three dimensions and found that the highly
interconnected nature of irregular vasculature produced by tumour-induced angiogenesis could
cause low rates of blood flow to the tumour with the potential for blood-borne drugs to bypass
the entire mass depending on the tumour shape. They also examined the effect of vessel pruning
(e.g. as may occur during anti-angiogenic therapy) on flow through the vascular network. In
order to investigate how adaptive remodelling affects oxygen and drug supply to tumours,
these authors later included vascular adaptation effects [495] (due to shear and circumferential
stresses generated by flowing blood [433, 434]). This model was further updated by McDougall
et al [366] to incorporate dynamic vessel radius adaptation, thus coupling vessel growth
with blood flow, in contrast to earlier flow models where effects of blood flow were
evaluated after generating a hollow network (e.g. as in Stephanou et al [495] and Alarcón
et al [10]).

Coupling tumour growth with angiogenesis. The nonlinear coupling of vessel growth and
adaptation with flow has a nontrivial effect on the vascular morphology and development.
In order to couple angiogenesis and tumour growth, the nutrient transfer from the vascular
system to the host and tumour tissues needs to be modelled. In Zheng et al [575] and Macklin
et al [352], angiogenesis models are coupled with the tumour growth model described in
section 2.3. The nutrient equation (20) is modified to account for nutrient released by the
neovascular network. Accordingly, following Macklin et al, an additional source term λσ

neo is
added to the right-hand side of equation (20)

λσ
neo = λ

σ

neoBneo (x, t) H
(

h

HD

− hmin

)
(1 − C (Pvessel, P )) (1 − n) , (41)

where λ
σ

neo is the transfer rate from the neovascular vessels. The function Bneo (x, t) = 1neo is
the characteristic or indicator function of the neovasculature (i.e. equal to 1 at the locations of
the new vessels). Further, P is the oncotic (solid/mechanical/hydrostatic) pressure, Pvessel and
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h are the dimensional pressure and the haematocrit in the neovascular network, respectively.
The constants HD and hmin reflect the normal value of haematocrit in the blood (generally
about 0.45) and the minimum haematocrit needed to extravasate oxygen, respectively. The
haematocrit may be modelled via the blood flow in the vascular network and is determined
from the angiogenesis model [366]. This provides one aspect of the coupling between the
tumour growth and angiogenesis models. A second mode of coupling between the two models
occurs through the cutoff function C (Pvessel, P ) such that large oncotic pressures P relative to
vessel pressures Pvessel may prevent extravasation and transfer of oxygen from the vessels into
the tissue.

The oxygen source term in equation (41) is designed such that for a sufficiently large
transfer rate λ

σ

neo, the oxygen concentration n ≈ 1 at the spatial locations of the neo-vessels.
Note that oxygen flux conditions across the neovasculature could be imposed instead, see, for
example, Alarcón et al [11].

Another form of coupling between the growing tumour and developing vascular network
occurs through the angiogenic factors released in the tumour microenvironment. In Zheng
et al [575] and Macklin et al [352], hypoxic/quiescent tumour cells are assumed to secrete
tumour angiogenic factors (TAFs), which diffuse into the surrounding tissue and attract
endothelial cells (ECs). ECs respond by binding with the TAF, proliferating and chemotaxing
up the TAF gradient. Following Macklin et al [352] the source term λT

prod. in equation (36)
describes the source of TAF due to secretion by hypoxic cells in the perinecrotic region:

λT
prod. = λ

T

prod. (1 − T ) 1�Q , (42)

where 1�Q is the characteristic function of the region of quiescent (hypoxic) cells and λ
T

prod.

denotes the non-dimensional production rate of TAF.

2.4.3. Simulation of neovascularization, diffusional instability and tissue invasion. The effect
of solid/mechanical pressure-induced vascular response on tumour-induced angiogenesis and
vascular growth is shown in figures 10 and 11 from Macklin et al [352]. With the values of the
parameters used here, a solid pressure-induced vascular constriction occurs when the pressure
P ≈ 0.8. Angiogenesis is initiated from an avascular tumour configuration at t = 45 days
(not shown), when 10 sprout tips are released from the parent vessel. At early times, the newly
developing vessels migrate, proliferate, branch and anastomose. It also takes some time for
flow to begin with significant flow developing only after about 10 days (55 days of total growth
time). Blood flow in the neovasculature starts near the parent capillary and eventually the flow
reaches the tumour.

The solid pressure prevents delivery of oxygen internally to the tumour, and thus the
delivery of oxygen is heterogeneous and significant gradients persist in the tumour interior.
There is no functional microvasculature internal to the tumour. While the tumour responds by
growing towards the oxygen-delivering neovasculature, the solid pressure generated by tumour
cell proliferation constricts the neovasculature in the direction of growth (where pressure is
highest) and also correspondingly inhibits the transfer of oxygen from those vessels. This
makes the tumour grow more slowly.

The neovasculature in other areas of the host microenvironment then provides a stronger
source of oxygen. This triggers tumour cell proliferation and growth in regions where
proliferation had been decreased previously. The heterogeneity of oxygen delivery and the
associated oxygen gradients cause heterogeneous tumour cell proliferation. Proliferation
is confined to regions close to the tumour–host interface. This results in morphological
instability that leads to the formation of invasive tumour clusters (e.g. buds) and complex
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Figure 10. Tumour-induced angiogenesis and vascular tumour growth. The vessels respond
to the solid pressure generated by the growing tumour. Accordingly, strong oxygen gradients
are present that result in strongly heterogeneous tumour cell proliferation and shape instability.
The tumour regions (red–proliferating �P, blue–hypoxic/quiescent �H, brown–necrotic �N), the
oxygen, mechanical pressure and ECM are shown. The times shown are t = 48 (3 days after
angiogenesis is initiated), 52.5, 82.5 and 150 days. Reprinted with permission from Macklin and
Lowengrub J. Math. Biol. 58 787. Copyright © 2009 Springer (with kind permission of Springer
Science and Business Media).

tumour morphologies. This result is consistent with the theory and predictions made earlier
that substrate inhomogeneities in the tumour microenvironment tend to cause morphological
instabilities in growing tumours. See, for example, Byrne and Chaplain [89, 90], Cristini
et al [126, 129, 339], Anderson et al [26, 32, 235] and Macklin and Lowengrub [348–351].

Although nutrient-providing, functional vessels are not able to penetrate the tumour during
growth, the growth of the tumour elicits a strong branching and anastomosis response from
the nearby neovasculature in the host microenvironment. The neovascular response is more
pronounced as the levels of TAF are higher in these regions (because tumour hypoxia is
increased) and thus the wall shear stresses initiate more significant branching.
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Figure 11. Dimensional intravascular radius (m) and pressure (Pa) along with the non-dimensional
ECM and TAF concentrations from the simulation shown in figure 10. Reprinted with permission
from Macklin and Lowengrub J. Math. Biol. 58 788. Copyright © 2009 Springer (with kind
permission of Springer Science and Business Media).

In figure 11, the dimensional neovasculature radii (in m) and intravascular pressures (in
Pa) are shown together with the non-dimensional ECM and TAF concentrations. Blood flow
causes a dilation of the vessels and an overall decrease in pressure as branching, anastomosis
and increased blood flow occur throughout the neovascular network. The constriction of
neo-vessels in response to the solid pressure is clearly seen.

The tumour-secreted MDE degrades the ECM in the host microenvironment near the
tumour and its interior. The new vessels are still able to migrate through the region of lower
ECM even though this acts against haptotaxis. Because the tumour grows slowly, only the tips
of the invasive clusters outrun the degraded ECM. As can be seen in figure 11, the host ECM
is degraded in the region between the invading clusters. The ECM signature of the original
avascular tumour spheroid can no longer be seen at later times.

This simulation shows strong nonlinear coupling between the tumour-induced
angiogenesis and the progression of the tumour. The pressure-induced vascular response
of constricting the radii of the neovasculature and inhibiting blood-tissue oxygen transfer not
only affects the tumour growth dramatically, but also significantly affects the growth of the
neovascular network.

The version of this model developed by Zheng et al (2005) has also been used by Cristini
et al [126] to predict changes in tumour morphology in response to perturbations in the
model parameters that govern cell–cell adhesion and the density of the microvasculature in
the host tissue, leading to the creation of a ‘morphology diagram’ [126] (figure 12). If cell–
cell adhesion is sufficiently strong (case A), then the tumour tends to maintain a compact
morphology, even following the onset of angiogenesis. In contrast, when cell–cell adhesion
is low (case B), the tumour tends to break into fragments [198] that invade the surrounding
tissue due to cell substrate gradients [93, 484, 575]. When adhesion is kept low but the host
vascular density is increased (case C), the substrate levels become more homogeneous (were
‘normalized’), leading to more compact morphologies and reduced invasion. These parameter
ranges can be achieved through therapeutic intervention. In anti-invasion therapy, drugs are
introduced to increase cell–cell adhesion; in anti-angiogenic therapy, drugs are used to target
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Figure 12. Effects of treatment on tumour morphological stability. Solid red: calculated tumour
boundary, black: necrosis. The neovasculature (pink) forms from ‘free’ endothelial cells (blue)
that chemotax after sprouting from pre-existing vessels (not shown) in outer tissue towards the
angiogenic factors in the perinecrotic regions. Reprinted from Cristini et al 2005 Clin. Cancer Res.
11 6772, with permission from the American Association for Cancer Research.

and interrupt the tumour neovasculature; and in vascular-normalization therapy, inefficient
blood vessels are ‘pruned’ to reduce or eliminate hypoxic gradients. These results may help
explain some undesirable effects of current anti-angiogenic therapies, due to exacerbating
hypoxic gradients [492]. For example, the model predicts that anti-invasive therapy will lead
from a transition from either case B or C to case A, while anti-angiogenic therapy causes a
transition from case C to case B, and vascular-normalizing therapy reverses the transition.

Following the strategy of Zheng et al [575], Frieboes et al [193] simulated angiogenesis
and vascular tumour growth in 3D using a multiphase tumour model [555] coupled with
a lattice-free continuous–discrete model of angiogenesis originally developed by Plank and
Sleeman [418]. The angiogenesis model involves a random walk on the unit sphere (instead
of on a Cartesian lattice). The lattice-free angiogenesis model is otherwise similar to the basic
angiogenesis model described above.

2.5. Multiphase modelling

2.5.1. Overview. The models reviewed so far treat the tumour mass as a single-component
material that locally expands and contracts in correspondence to variable rates of cell adhesion,
mitosis, necrosis and apoptosis. In fact, tumours consist of multiple phases including a variety
of different cell genotypes and phenotypes as well as ECM and water. Being able to describe the
dynamics of multiple cell species is crucial since the tumour microenvironment (e.g. hypoxia)
and impaired cell genetic mechanisms can lead to multiple cell genotypes and phenotypes
that select for cell survival under abnormal conditions [246], with profound consequences
on the overall tumour growth, invasion and response to treatment. Furthermore, the
microenvironment of invasive tumours may be characterized by non-sharp boundaries between
tumour and host tissues, and between multiple species within the tumour [323, 327, 341]. A
multiphase approach represents a more general and natural modelling framework for studying
solid tumour growth, and is able to provide a more detailed account of the biophysical process
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of tumour growth than that in single-phase models. Thus, this is an important direction for
future research.

In a multiphase approach, a solid tumour is described as a saturated medium, comprising
of at least one solid phase (cells, ECM, etc) and one liquid phase (water), and can be generalized
to incorporate any number of additional phases to describe multiple cell species. At a given
location, the mass or volume fractions describe the relative amounts of different cell clones
as well as necrotic and host tissue. The governing equations consist of mass and momentum
balance equations for each phase, interphase mass and momentum exchange, and appropriate
constitutive laws to close the model equations. Phenotypic and genetic heterogeneity (e.g.
mutations) in the cell population can be represented. This is a critical improvement towards
realistically simulating mutation-driven heterogeneity. The mixture model approach also
eliminates the need to enforce complicated boundary conditions across the tumour/host (and
other species/species interfaces) that would have to be satisfied if the interfaces were assumed
sharp. Further, this methodology does not require explicit tracking of the interface as is required
with a sharp interface.

Recently, multiphase mixture models have been developed to account for heterogeneities
in cell-type and in the mechanical response of the cellular and liquid tumour phases. In early
work, Please et al [420, 421] applied multiphase modelling to tumour growth by capturing both
tumour cells and extracellular fluid as separate continuum phases. Ward and King [543, 544]
and Breward et al [73] modelled avascular cancer growth through a two-phase description,
comprised of tumour tissue and dead tissue (extracellular space) and incorporated a model of
cell–cell adhesion. This model was later extended by Venkatasubramanian et al [533] and
Bertuzzi et al [65] to account for ATP production from energy metabolism in the models of
multicellular tumour spheroids.

Ambrosi and Preziosi [23] reviewed several mixture models and developed a mixture
model treating the tumour as a deformable porous material. Byrne et al [95] and Byrne and
Preziosi [97] extended the two-phase model of Ambrosi and Preziosi (2002). Jackson and
Byrne [287] and Lubkin and Jackson [345] used incorporated the biomechanical effects of a
capsule surrounding a tumour and analysed the effects of encapsulation on tumour growth.
Jackson and Byrne (2002) also investigated the consequences of different hypotheses for
capsule formation. Byrne and Preziosi (2003) investigated the effect of stress-dependent cell
proliferation and external loads on spherical tumour growth and the equilibrium size attained.
Franks et al [186, 187] used mixture models to study ductal carcinoma in situ of the breast.
Breward et al [74] extended avascular modelling to describe vascular tumour growth, thus
incorporating a third phase to describe the spatial and temporal distribution of blood vessels.

Roose et al [457] studied the stress generated by solid tumour growth using a poroelastic
model. Araujo and McElwain [37, 38] proposed an alternative multiphase model of tumour
growth in an effort to more accurately capture residual stresses using an energetically derived
thermodynamically consistent mixture model that includes a solid phase representing the
tumour cells and extracellular matrix and a liquid phase. Isotropic and anisotropic growth
models were considered, highlighting the need to incorporate stress relaxation in order to
predict a stable evolution of stresses over a period of growth and equilibration to a steady
avascular state. As discussed earlier, however, these methods rely on an inappropriate use of
frame-indifference and the Jaumann derivative and instead accretive forces should be used [24].
Chaplain et al [110] used a mixture model to focus on biomechanical effects on tumour growth
and demonstrated that if tumour cells underestimate the compression state of the tissue, this
may confer a fitness advantage.

Bertuzzi et al [63, 64] developed limited multiphase models of tumour cords (growth of
a tumour around a capillary) that incorporate cytotoxic agents and the flow of an interstitial
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fluid. Geometry-dependent kinematic relations limit the generality of these models. Astanin
and Tosin [43] developed a fully multiphase mixture model of tumour cords growing around a
capillary. Later, Preziosi and Tosin [431] developed a model of adhesive interactions between
tumour cells and the ECM and performed two-dimensional simulations to investigate the
effect of these interactions on the growth of tumour cords and the development of fibrosis.
Astanin and Preziosi [44] used a two population model to investigate the upregulation of
glycolysis (Warburg effect) in tumour cords. Ambrosi and Preziosi [24] used a mixture
model to study the elasto-viscoplastic response of the tumour and microenvironment during
growth. Preziosi et al [428] extended previous work and developed an elasto-visco-plastic
model of cell growth. This was then used to compare with experimental results of cell
aggregation.

Green et al [249] developed and analysed a multiphase mixture model to investigate the
effect of interactions among cells and the ECM on the formation and structure of multicellular
aggregates in vitro. Galle et al [216] used a multiphase mixture model to study the effect
of contact inhibition on the growth of cell colonies and compared the results with an agent-
based discrete model of cell growth. Further references on this type of modelling can be
found in the recent reviews by Araujo and McElwain [34], Hatzikirou et al [260], Quaranta
et al [439], Byrne et al [88], Graziano and Preziosi [248], Astanin and Preziosi [42],
Roose et al [456], Preziosi and Tosin [430] and Tracqui [525]. Due to the complexity of
multiphase models, most analyses and numerical simulations are one-dimensional or radially
symmetric.

Very recently, thermodynamically consistent mixture models for all phases of solid tumour
growth in 3D have been developed. Wise et al [555] developed a multispecies mixture model
and performed simulations of tumour growth in three dimensions. Frieboes et al [193] and
Bearer et al [55] combined the mixture model developed in Wise et al with a model for
tumour-induced angiogenesis to simulate vascular growth and compared results with clinical
data. Cristini et al developed, analysed and simulated a mixture model to study tumour invasion
and branching under hypoxic conditions. Using a general approach based on energy variation,
the nonlinear effects of cell-to-cell adhesion and taxis inducing chemical and molecular species
have been incorporated. This model enables a detailed description of tumour progression and
the dependence of cell–cell and cell–matrix adhesion on cell phenotype and genotype as well as
on the local microenvironmental conditions (e.g. oxygen levels). The system energy accounts
for all the processes to be modelled. Adhesion is introduced through an interaction energy that
leads to well-posed fourth-order equations. In this approach, sharp interfaces are replaced by
narrow transition layers that arise due to differential adhesive forces among the cell species.
The resulting diffuse-interface mixture equations are well posed, unlike some previous mixture
models, and are a coupled system of equations including fourth-order nonlinear advection–
reaction–diffusion equations of Cahn–Hilliard-type [98] for the cell-species volume fractions
coupled with reaction–diffusion equations for the substrate components. A related non-local
continuum model of adhesion was recently developed by Armstrong et al [39], and used later
in the tumour context by Gerisch and Chaplain [233]. We also note that a continuum model of
cell adhesion and migration was recently developed by Kuusela and Alt [325] in the context
of a slowly migrating cell on a substrate.

To account for angiogenesis, this mixture model has been coupled nonlinearly to a
composite continuum–discrete, lattice-free model of tumour-induced angiogenesis originally
developed by Plank and Sleeman [417, 418]. To solve the equations numerically, very efficient,
adaptive finite-difference nonlinear multigrid methods have been developed [128, 553–555].
The model was employed to study 3D vascularized cancer growth (Frieboes et al [192]),
including malignant brain tumours (Frieboes et al [193], see also Sanga et al [464]).
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2.5.2. General conservation equations. The primary dependent variables in a (N +1)-species
model can be specified as follows [555]:

– the volume fractions of the water, tumour and host cell species, φ0, . . . , φN ,
– the densities of the components ρ0, . . . , ρN,
– the stresses σ0, . . . , σN

– the component velocities u0, . . . , uN.

It may be assumed that there are no voids (i.e. the mixture is saturated) and thus
∑N

i=0 φi = 1.
Further, for simplicity, it may be assumed that densities are constant and equal to ρ, i.e.
independent of temperature, pressure and component type. We also suppose that the system is
isothermal. Without loss of generality, i = 0 is identified as the water component. The volume
fractions of the components are assumed to be continuous in a domain �, which contains both
the tumour and host tissues.

The volume fractions obey the mass conservation (advection–reaction–diffusion)
equations

ρ

(
∂φi

∂t
+ ∇ · (uiφi)

)
= −∇ · Ji + Si, (43)

where Ji are fluxes that account for the mechanical interactions and diffusional fluxes among
the cell species. The source terms Si account for inter-component mass exchange as well as
gains due to proliferation of cells and loss due to cell death and lysing.

The volume-averaged velocity of the mixture is then defined as u = ∑N
i=0 φiui . Summing

equation (43), the mass of the mixture is conserved only if
∑N

i=0 Ji is constant. Without loss
of generality, this constant is chosen to be zero:

N∑
i=0

Ji =
N∑

i=0

Si = 0. (44)

These conditions are posed as consistency constraints for the fluxes and sources. In the absence
of inertial and external forces, the balance of linear momentum is

0 = ∇ · σi + πi, (45)

where πi are interaction forces among the species. Assuming that the mixture stress
σ = ∑N

i=0 σi satisfies ∇ · σ = 0, this gives the constraint
∑N

i=0 πi = 0.
Let ui be the internal energy of the ith component and let the volume-averaged internal

energy of the mixture be u = ∑N
i=0 φiui . Then, in its simplest form, the balance of energy

equation is given by (e.g. [37, 128])

ρφi

Diui

Dt
= σi : ∇vi + ρiφiri + βi, (46)

where Di/Dt = (∂/∂t) + ui · ∇ is the advective derivative with respect to the velocity ui , ri

is the heat added to each phase to keep the mixture isothermal (θ is the fixed temperature) and
βi are energy interaction terms that satisfy

N∑
i=0

(βi + Siui − πi · ui ) = 0. (47)

Constitutive relations for the fluxes Ji , the interaction forces πi and the interaction energies
βi may be posed consistently with the second law of thermodynamics. Briefly, the idea is as
follows. Let ηi denote the entropy of each component. Then, the volume-averaged entropy
of the mixture is η = ∑N

i=0 φiηi . Defining the temperature to be θ (which is assumed to be
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constant), the second law of thermodynamics can be posed in terms of the Clausius–Duhem
inequality [526]

ρ

(
∂η

∂t
+ u · ∇η

)
+ ∇ · J − ρr/θ � 0, (48)

where J is an entropy flux and r = ∑N
i=0 φiri , where ri are the volume-averaged rates of heat

supply needed to keep each component isothermal. The entropy and internal energy ui may be
used to define the Helmholtz free energy of each component ψi = ui −θηi and the free energy
per unit volume �i = ρφiψi . The next step is to re-write the energy equation (46) in terms
of the Helmholtz free energy and to posit the dependence of the free energy upon independent
variables of each phase [123].

A solid/liquid biphasic model. For binary mixtures of one solid (i = 1) cellular component
and water (i = 0), Araujo and McElwain [37], assume that ψi = ψi(F1, G1, u1 − u0). In
this approach, F1 is the deformation gradient in the solid phase and G1 = ∇F1. If one further
assumes that the volume fractions of solid and liquid phases are constant, Ji = 0, and that the
liquid phase is inviscid, then Araujo and McElwain show that the stresses become

σ0 = −φ0pI, σ1 = −φ1pI + φ1F1

(
∂ψ1

∂F1

)T

, (49)

where p is a pressure that is introduced to maintain φ0 + φ1 = 1 and I is the identity tensor.
Assuming that displacements are small, and that the solid component is incompressible, Araujo
and McElwain went on to derive the mixture system:

φ1ρ∇ · u1 = S1, ρ
D1φ1

Dt
= 0 ∇ · (φ1u1 + φ0u0) = 0, (50)

for conservation of mass. The growth equations are

DE1

Dt
= ∇ · u1� +

1

2µ

D
Dt

(
σ1 +

1

3
trσ1

)
+

φ1

2µ

Dp

Dt
(3� − I) , (51)

where D/Dt is the Jaumann derivative (e.g. [300]), � is an anisotropic growth tensor [35] and µ

is a Llame constant. The stress–strain relation is E1 = (1/2µ)σ1−((trσ1 + 3φ1p)/6µ) I+g�,
where g is the rate of volume growth of the solid which satisfies

S1 = φ1ρ
Dg

Dt
− 3φ2

1ρ

2µ

Dp

Dt
.

Finally, the momentum equations are

∇ · σ1 + α (u0 − u1) = 0, φ1∇p = −α (u0 − u1) , (52)

where α is a drag coefficient.

Liquid–liquid mixture model I. An alternative approach was taken by Cristini et al [128].
In their work, the solid fraction was treated as a viscous fluid and cell–cell and cell–matrix
adhesive interactions were incorporated and thermodynamically and mechanically consistent
equations were derived. In addition, taxis inducing chemical and molecular species were
included. Accordingly, the Helmholtz free energy was taken to be

�i = �̃i(φ0, . . . , φN) + φi

L∑
l=1

χilcl +
N∑

j=0

ε2
il

2
|∇φj |2, (53)
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where c1, . . . , cL are the concentrations of chemical and molecular species, χil are taxis
coefficients and εil measures the strength of component interactions (see Wise et al [555]).
The dependence of �i upon the volume fractions and the gradients of the volume fractions
arises naturally through expansion of a nonlocal interaction potential among the phases (e.g.
see [98, 555]) that represents adhesive interactions among the species. The resulting system is

∂φi

∂t
+ ∇ · (φiui ) = (Si − ∇ · Ji ) /ρ,

N∑
i=0

∇ · (φiui ) = 0, (54)

for the conservation of mass. In equation (54), the adhesion fluxes may be given as [128]
Ji = −M∇µi which is a generalized Fick’s law, for i �= 0, where µi is the chemical potential

µi = Fi(φ0, . . . , φN) +
L∑

l=1

(χil − χ0l)cl −
N∑

j=0

(
εji�φi − ε2

j0�φ0
)
, (55)

and Fi = ∑N
j=0

(
(∂�̃j /∂φi) − (∂�̃0/∂φ0

)
). The flux in the liquid is J0 = − ∑N

i=1 Ji . In

the liquid (assumed to be inviscid), the momentum balance equation is the multicomponent
Darcy’s law:

φ0∇p =
N∑

i=0

αi (ui − u0) , (56)

where the αi are drag coefficients. For the solid components, the general viscous law is obtained
(for i > 0):

αi (ui − u0) = −φi∇ (p + µi) + ∇ · (
Li

(∇ui + ∇uT
i

))
, (57)

where Li

(∇ui + ∇uT
i

) = λi

(∇ui + ∇uT
i

)
+ νi (∇ · ui ) I, where λi and νi are viscosities.

In the case of two component mixtures, a local approximation of this model may be
achieved by taking u0 = −(φ1/φ0)u1, p to be a constant, setting the viscosity to zero and
dropping equation (56) to get u1 = −Mφi∇µi , see [128]. Viscosity can be easily included and
yields a nonlocal equation analogous to the mixture model derived in Byrne and Preziosi [97]
in one-dimension; the inviscid model is similar to that considered earlier by DeAngelis and
Preziosi [146]. Interestingly, the local approximation can be shown to converge to a classical
single-phase sharp-interface model of the type considered in previous sections as the component
interactions εil = ε → 0, see Cristini et al [128]. A discussion of the model without the above
approximation may also be found in [128].

For multicomponent mixtures consisting of more than two components, one may take yet
another approximation by supposing that the velocities of the solid components are given by
ui = Miφi∇µi and that the velocity of the liquid is u0 = −1/φ0

∑N
i=1 φiui . This is analogous

to the closure laws described in DeAngelis and Preziosi (2000) and Ambrosi and Preziosi [23].

Liquid–liquid mixture model II. Another approach to modelling multicomponent tumours
was recently developed by Frieboes et al and Wise et al [193, 555]. In this approach, the mass
balance equations are the same as in equation (54) and the constitutive laws for the mechanical
fluxes Ji and a generalized Darcy’s law for the cell velocities ui are derived using an energy
variation argument utilizing the mixture energy E given by

E =
N∑

i=0

∫
�i dx, (58)
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where the energy density is still given by equation (53). As derived in [555], thermodynamically
consistent fluxes may be taken to be the generalized Fick’s law:

Ji = −M̄i∇
(

δE

δφi

− δE

δφN

)
, 1 � i < N − 1, (59)

and JN = − ∑N−1
i=1 Ji , where M̄i > 0 is a mobility, δE/δφi are variational derivatives of the

total energy E and are given by

δE

δφi

=
N∑

j=0

(
∂�̃j

∂φi

+
L∑

l=1

χjlcl − ∇ · (
ε̄2
ji∇φi

))
, 1 � i < N. (60)

The velocities of the components may be also determined in a thermodynamically and
mechanically consistent way. Assuming that the solid and liquid volume fractions remain
constant:

∑N
i=1 φi = φ̃s and φ0 = 1 − φ̃s with φ̃s constant in space and time, the resulting

generalized Darcy laws for the velocities of the components are given by

u0 = −k̄0∇
(

δE

δφ0
+ q

)
, (61)

uj = −k̄

(
∇p −

N∑
i=1

δE

δφi

∇φi

)
− k̄j∇

(
δE

δφj

− 1

φ̃S

N∑
i=1

φi

δE

δφi

+
p

φ̃S

)
, j � 1, (62)

where q is the water pressure, p is the solid pressure and k̄0, k̄, k̄j are positive definite motility
matrices. The constitutive laws (59), (61) and (62) guarantee that in the absence of mass
sources, the energy in equation (58) is non-increasing in time as the fields evolve. This
approach may be straightforwardly extended to account for elastic and viscoelastic response
of the solid fraction.

In related work Armstrong et al [39], and later Gerisch and Chaplain [233], considered
a nonlocal model of adhesion in which k̄j = 0, p = 0 and the variational derivatives in the
velocity uj are replaced by (in 2D)

A[φ](x, t) = 1

R

∫ R

0
r

∫ 2π

0
n(θ) · O(r)g (φ(t, x + rn(θ))) dθ dr, (63)

where n is the normal vector to a ball of radius R centred at x which is termed the sensing
region and R is the sensing radius. The functions O and g determine the strengths of the
interactions among the different cell types (and extracellular matrix) and φ = (φ1, . . . φN)

is a vector of volume fractions. As the sensing radius R tends to zero, the nonlocal model
converges to a local reaction–diffusion-taxis system of partial differential equations [39, 233].
For a finite sensing radius, Hillen et al [271] recently proved the global existence of solutions
to the chemotaxis equations (see also the recent review by Hillen and Painter [270]). This
adhesion velocity may actually be derived using energy variation arguments starting with a
fully nonlocal version of the energy E such as

E = 1

2

∑
i,j

∫ ∫
Jij (x, y)g(φi(x))g(φj (y)) dx dy, (64)

where Jij is an appropriately defined interaction kernel. See the appendix of [555] for a
description of the procedure.

In other related work, Khain and Sander [312] developed a model of cell–cell adhesion
for a single cell species similar to that described in Liquid–liquid model I above. In particular,
Khain and Sander use a generalized Cahn–Hilliard [98] (GCH) equation to study tumour
invasion. Below a critical level of adhesion, the tumour invades as a propagating front. Above
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the critical level, a second peak is found to appear in the tumour fraction (density) behind
the leading front. The results of the GCH model compare well with a stochastic discrete cell
model recently developed by Khain et al [313].

2.5.3. A special case of the liquid–liquid mixture model II. The model given in equations
(59)–(62) may be simplified [555] by assuming (i) that tumour cells prefer to adhere to one
another rather than to the host, as observed experimentally [40] and (ii) that no distinction is
made between the adhesive properties of the viable and dead cells. Accordingly, in equation
(53), we may take �̃i(φ0, . . . , φN) = φif (φT), where φT = ∑N−1

i=1 φi is the solid fraction
of the tumour tissue and φN = φH is the volume fraction of the host tissue (φT + φH = φ̃S).
Further, taking εij = 0 for i, j < N and εNN = ε̄, the total adhesion energy (58) is

E =
∫

�

(
f (φT) +

ε̄2

2
|∇φT|2

)
dx. (65)

This form of the energy arises also in the classic theory of phase transitions (e.g. [98]). For
example, f may be written as the difference of the two convex functions

f (φT) = fc(φT/φ̃S) − fe(φT/φ̃S), (66)

where one may take

fc(φ) = Ē

4
α1

(
(φ − 1/2)4 + 1

)
and fe(φ) = Ē

4
α2 (φ − 1/2)2 , (67)

where α1 and α2 describe the strength of adhesion (attraction) of tumour cells to the host tissue
and each other, respectively, and Ē is an overall energy scale. Setting α1 = α2, yields a double
well energy f with minima at φT = φ̃S and φT = 0 and gives rise to a well-delineated phase
separation of the tumour (φT ≈ φ̃S) and the host tissues (φT ≈ 0). Since φT is continuous, it is
necessary that 0 < φT/φ̃S < 1 in the interfacial region dividing the tumour and host domains.
On the other hand, the states φT > φ̃S or φT < 0 are not physical, and the interaction energy
tends to prevent their formation by increasing the energy of those states. Note that taking an
interaction energy with logarithmic terms would explicitly prevent their formation [169]. By
varying the ratio α1/α2, the relative tendency of the tumour cells to aggregate can be modified.
For example, increasing the ratio results in an increasingly diffuse tumour mass.

The thickness of the diffuse interface between the tumour and host tissue depends on the
relative sizes of ε̄, Ē and α1/α2. Specifically, for fixed Ē the smaller the constant ε̄ is, the less
diffuse the interfacial region is. If Ē ∼ 1/ε, then it can be shown that this system converges as
ε → 0 to a classical sharp-interface single-phase tumour model [555]. If the tumour contains
different species that have different adhesion properties, the energy (65) can be modified to
account for the different cell–cell interactions following the more general approach described
earlier (see also [316]).

Fluxes and velocities. From the flux constitutive equation (59) and the adhesion energy (65),
the adhesion fluxes may be determined. Recalling that the densities of the components are
matched, and taking the mobilities M̄i = M̄φi , where M̄ is a positive constant, the fluxes are
obtained [555]:

Ji = −M̄φi∇ δE

δφT
, (68)

where i = 1, . . . , N − 1 and JN = JH = − ∑N−1
i=1 Ji , where it is used that the energy does

not depend explicitly on φH. The variational derivative is given by
δE

δφT
= f ′(φT) − ε̄2∇2φT. (69)
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Setting k̄i = 0 for i > 0, which is consistent with assuming the cells are tightly packed and that
they move together with the mass-averaged velocity, the component velocities become [555]

u0 = uW = −k̄W∇q, (70)

ui = − k̄

(
∇p − δE

δφT
∇φT

)
, (71)

where it is used that the energy does not explicitly depend on φ0 and φN . In these equations,
the terms dependent on δE/δφT represent the excess force due to adhesion and arise from
cell–cell interactions. The coefficients k̄W, and k̄ are motilities that reflect the response of
the water and cells, respectively, to pressure gradients. These coefficients may depend on the
volume fractions and other variables as the individual components may respond to the pressure
and adhesive forces differently, but mixtures of components tend to move together. The cell
motilities contain the combined effects of cell–cell and cell–matrix adhesion. The constitutive
choices (68), (71) and (70) guarantee that in the absence of mass sources (Si = 0), the adhesion
energy is non-increasing as the fields evolve, while the total tumour mass is conserved.

Mass exchange terms. As a first approximation, viable tumour cells may be assumed to
necrose based only on the level of the local nutrient concentration n, i.e. when the nutrient n

falls below the cell viability limit n̄N,i which may be different for different cell types. Cells
may be assumed to be comprised entirely of water. In terms of volume fraction, this is a
reasonable first approximation. Cell mitosis may be assumed proportional to the amount of
nutrient present and as mitosis occurs, an appropriate amount of water is converted into cell
mass. Conversely, the lysing of cells represents a mass sink as cellular membranes are degraded
and the mass converts completely into water. Mitosis is neglected in the host domain as the
proliferation rate for tumour cells is much larger. Accordingly, defining φD to be the volume
fraction of unlysed dead tumour cells, we may take [555]

Si = λ̄M,i

n

n̄∞
φi − λ̄A,iφi − λ̄N,iH(n̄N,i − n)φi, N > i > 0 and i �= D, (72)

SD =
N−1∑
i>0
i �=D

(
λ̄A,i + λ̄N,iH(n̄N,i − n)

)
φi − λ̄LφD, (73)

SN = SH = 0, (74)

SW = −
N∑

i=1

Si = −
N−1∑

i=1
i �=D

λ̄M,i

n

n∞
φi + λ̄LφD, (75)

where λ̄M,i , λ̄A,i , λ̄N,i and λ̄L are the rates of volume gain or loss due to cellular mitosis,
apoptosis, necrosis and lysing, respectively, and where n̄∞ is the far-field nutrient level. Finally,
H is the Heaviside function. For simplicity, we have omitted mass exchange terms whereby
mutations or epigenetic events may transform one cell species into another.

Nutrient diffusion. In the following discussion, ‘nutrient’ denotes a generic cell substrate,
such as oxygen or glucose. Following the single-phase approach discussed in section 2.2, the
host tissue is modelled at equilibrium as a first approximation, where the net nutrient uptake
therein is negligible compared with the uptake by tumour cells. Nutrient uptaken by the host
tissue is assumed to be replaced by supply from the normal vasculature. This may not be the
case in the tumour, where not only the uptake exceeds the supply, but the uptake may also
be much higher than that of the host tissue [179, 441]. Using the quasi-steady approximation
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described earlier for single-component tumour models, the nutrient transport equation may be
written as

0 = ∇ · (D(φ1, . . . , φN)∇n) + TC −
N−1∑

i=1
i �=D

νu
i φi, (76)

where D is the nutrient diffusivity and can vary depending on the medium and cell types, e.g.
it can be an interpolated function from the host to the tumour, with constant value 1 inside
the tumour and DH in the host medium. TC is a nutrient source from a pre-existing uniform
vasculature or newly formed vasculature through angiogenesis and νu

i are uptake rates by the
different cell types.

2.5.4. Nonlinear results.

Morphological instability: simulations of a four-phase model. We now consider the growth
of a tumour comprising of viable cells φV and dead cells φD, i.e. φT = φV + φD. The dead
cell population includes the tumour cells that have undergone apoptosis or necrosis. Dead
cells are assumed not to consume nutrient. There is also a host cell species and a liquid
component. Using the generalized Darcy’s law mixture model described in the previous
section, the growth of an initially perturbed spherical tumour in 3D with cell adhesion γ = 0
is shown in figure 13. The isosurface φT = 0.5 is plotted. The parameters are the same as
for figure 5 in [555]. Substrate gradients contribute only to variable tumour cell proliferation
and necrosis but do not induce migration (e.g. chemotaxis of tumour cells). Consistent with
linear analyses [129, 339], the tumour is unstable due to the limited supply of nutrient and
the corresponding tumour mass loss due to necrosis in the tumour interior. The simulation
shows that in the nonlinear regime, a morphologically complex tumour emerges with repeated
budding and sub-spheroid growth. By acquiring this morphology, the tumour has effectively
increased its surface area to volume ratio in order to gain access to more nutrients from the
surrounding host vasculature.

Chemotaxis-driven instability. Cristini et al [128] considered the effects of chemotaxis
induced through molecular species. Tumour evolution in nutrient-rich and nutrient-poor tissues
was investigated by performing two-dimensional nonlinear numerical simulations. It was
demonstrated that a tumour may suffer from taxis-driven fingering instabilities that are most
dramatic when cell proliferation is low, as predicted by linear stability theory. This is also
observed in experiments. This work shows that taxis may play a role in tumour invasion and
that when nutrient plays the role of a chemoattractant, the diffusional instability is exacerbated
by nutrient gradients. This model is thus capable of describing some of the complex invasive
patterns observed in experiments [411].

Briefly, in Cristini et al [128] nutrient-driven taxis was included by adding the term χnnφT

to the total energy in equation (65), following the general fomulation given in equation (53).
Equation (69) then becomes:

δE

δφT
= f ′(φT) − ε2∇2φT + εχnn. (77)

Using the liquid–liquid mixture model I, Cristini et al simulated the growth of a solid tumour in
a nutrient-poor microenvironment. The proliferation rate is low and cell apoptosis is neglected.
In figure 14(a), the tumour evolution from Cristini et al for low cell proliferation (we note
that if χn = 0, i.e. when there is no taxis, the evolution is stable). The solid curve represents
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Figure 13. Multiphase model: growth of a two-plus-four mode tumour in 3D with cell adhesion
γ = 0. The φV = 0.5 isosurface is shown. Parameters are the same as for figure 5 in [555]. The
model predicts that this tumour morphological instability, which increases the overall surface area
to volume ratio, enables the tumour to increase its access to nutrient from the surrounding host
vasculature. Reprinted with permission from Frieboes et al J. Theor. Biol. in preparation [192].
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Figure 14. Effects of chemotaxis on tumour morphology: evolution of the tumour surface, with
A = 0, D = 1, ε = 0.005, χσ = 5 and the initial tumour surface as (x(α) − 12.8, y(α) − 12.8) =
(2 + 0.1 cos 2α)(cos α, sin α)). The φ = 0.5 contour is shown, where in the interior of the shape
φ ≈ 1 and in the exterior φ ≈ 0. (a) P = 0.1; (b) P = 0.5. Solid: nonlinear simulation;
Dash–dotted: linear results. The last row shows the details of the mesh development. Reprinted
with permission from Cristini et al J. Math. Biol. 58 753. Copyright © 2008 Springer (with kind
permission of Springer Science and Business Media).
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the tumour interface (φT = 0.5) and dash–dotted curve represents the linear results for the
sharp-interface model. The figure illustrates that fingers develop around time t = 10 and get
stretched out at time t = 20, forming long, slim and invasive fingers, thereby increasing the
surface area of the tumour and allowing better access to nutrient. At later times, the fingers
continue to stretch and the fingers tend to bend inwards. There is good agreement between the
linear and nonlinear results at early times although there is significant deviation at later times
due to strong nonlinearity. Figure 14(b) shows similar simulations of tumour evolution for a
larger proliferation rate. All other parameters are the same as figure 14(a). The fingers are
thicker for the case with larger proliferation and the spread of the fingers into the surrounding
tissue for smaller proliferation is more pronounced at early times. As before, there is good
agreement between the linear and nonlinear results at early times before nonlinear effects
dominate the evolution.

The numerical results reveal that the tumour may suffer from nutrient-taxis-driven
fingering instabilities which are most dramatic when cell proliferation is low. This suggests
that nutrient-taxis may play a role in tumour invasion and that the diffusional instability is
exacerbated by nutrient gradients. This resembles the branched invasive structures observed
experimentally in tumour spheroids grown in hypoxic conditions [411].

2.5.5. Comparison with clinical data.

Glioma. The most common form of human glioma (cancer of the glial cells in the brain)
is glioblastoma multiforme (GBM), which is the most aggressive stage of the disease.
Typical survival rates of patients diagnosed with GBM are less than twelve months. GBM
are characterized as being highly invasive, vascularized tumours (unlike some lower grade
gliomas). See, for example, Preusser et al [426].

The results from the mixture model described in section 2.5.3, coupled with a lattice-free
model of angiogenesis [417, 418] (see section 2.4.2), were recently compared with clinical
brain tumour data by Frieboes et al [193], after estimating parameter values from in vitro [194]
and in vivo experiments [193]. Parameters governing the extent of neovascularization and
nutrient supply due to blood flow were estimated in part from dynamic contrast enhanced
magnetic resonance imaging (DCE-MRI) observations in patients [395] (see [193] for details).
The model correctly predicted gross tumour morphology, including interior regions of necrosis
surrounded by viable tumour tissue, as well as a tortuous neovasculature. Figures 15 and 16
show a simulation of a growing glioblastoma using a recently updated version of this model
(see [192]). Because the simulation was based upon the hypothesized relationships between
cell adhesion, motility, death and proliferation described in [193], it allows for a quantitative
analysis of these relationships in virtual patients, which could drive the development of
morphological and immunohistopathological criteria for in vivo tumour invasion.

The model predicted regions of viable cells, necrosis in inner tumour areas and a tortuous
neovasculature as observed in vivo [79]. The vessels migrate towards the tumour/host interface
since perinecrotic tumour cells and host tissue cells close to the tumour boundary produce
angiogenic factors and other regulators. The tumour eventually coopts and engulfs the vessels.

The model also enabled prediction of the fine details of tumour morphology by quantifying
cell metabolic response to spatial gradients in substrate levels caused by spatio-temporal
heterogeneity in proliferation and the abnormal neovasculature. Excellent agreement was
found when comparing the tumour ‘virtual histopathology’ with clinical pathology (figure 17),
observing 100–200 µm thick sections of tumour encircling neo-vessels, surrounded by necrotic
tumour cells and vessels that were shut down due to either age or mechanical intratumoural
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Figure 15. Study of human glioma using a multiscale 3D mixture model [192, 193, 555]. Viable
tissue (region between red outer tumour boundary and inner purple boundary), necrosis (region
interior to inner purple boundary) and vasculature (thick red lines: mature blood-conducting vessels;
thin light red lines: new non-conducting vessels) are shown. The three-month time sequence (top to
bottom) shows the effects on the morphology by successive cycles of starvation, neovascularization
and vessel co-option [45, 274, 528].

pressure (observed in [400]). This vessel shutdown enhances the hypoxic gradients seen
clinically and predicted through computer modelling. The overall tumour shape depended
strongly upon the vascular patterning, a result strongly supported by animal [57, 323, 327, 411,
459] and clinical imaging (e.g. [560]) and ex vivo histological data. The virtual histopathology
also suggests that a tumour may rely upon vessels in the nearby host tissue [49, 426] and
proliferate towards them; this is confirmed in the brain histopathology in figure 17.

The model enables a quantitative analysis, e.g., viable region thickness of about 100–
200 µm and extent of necrosis as seen in figure 17 are shown to be strongly dependent
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Figure 16. Study of human glioma using a multiscale 3D mixture model [192, 193, 555]. Another
view of the simulation from figure 15 at a slightly later time (90 days).

Figure 17. Study of human glioma using a multiscale 3D mixture model [192, 193, 555].
(a): Details of virtual tumour histology showing invasive tumour front (white); locations of blood-
conducting new vessels (NV) and non-conducting vessel sprouts (blue dots). Aged vessels in the
tumour have thicker walls and are assumed to provide fewer nutrients than the thin-walled vessels at
the tumour periphery [400]. (b): H&E stained patient glioblastoma histopathology sections viewed
by fluorescence microscopy [193]. Tumour (bottom) is invading normal tissue (top). Note the
demarcated margin between tumour and brain parenchyma (middle top), green fluorescent outlines
of large, aged vessels deep in the tumour. Bar 100 µm. Reprinted with permission from Frieboes
et al NeuroImage 37 S66. Copyright © 2007 Elsevier.

on diffusion gradients of oxygen/nutrient in the microenvironment and agree with previous
experiments [194, 269]. Further, the model predicts that the tumour boundary moves at a
rate of about 50–100 µm per week, presenting a mass of diameter of about 5 cm in one year.
These results are supported by well-known clinical observations (e.g. [388]). As the tumour
grows and engulfs vessels in its vicinity, the tumour may compress the vessels [400] and
disrupt flow of nutrients, leading to further necrosis and even temporary mass and vascular
regression [275, 569]. In addition, chaotic angiogenesis leads to heterogeneous perfusion in
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Figure 18. Simulations and experiments of cell protrusions in glioma growing into detached cell
clusters and forming separate tumours. Top row: simulation snapshots (time =days) Bottom row:
in vitro. Bar: 130 µm. Tumour microsatellites are seen on right. Reprinted from Frieboes et al
2006 Cancer Res. 66 1602, with permission from the American Association for Cancer Research.

the tumour that also may be responsible for regression of parts of the vascular network and
necrosis of tumour cells [101, 407]. This enhances variable tumour cell proliferation.

The morphological instability leading to invasion in glioma resembles the overall shape
of microsatellites observed experimentally in vitro and the predicted simulation morphologies
in avascular conditions figure 18 (labelled ‘sub-spheroids’), including a smooth leading edge
consisting of proliferating tumour cells and a trailing edge of necrotic cells. These images and
data are in good agreement with morphologies predicted by stability analyses and computer
simulations [126, 193, 194, 484].

These results support the idea that sophisticated multiphase tumour simulators, capable
of simulating vascularized growth in two and three dimensions, and calibrated by in vitro and
in vivo data, have the potential to predict tumour behaviour in patients.

Ductal carcinoma in situ. Proliferation of epithelial cells that have undergone malignant
transformation but remain at their original site, confined by their basement membrane, is
called carcinoma ‘in situ’ [380]. In particular, ductal carcinoma ‘in situ’ (DCIS) is the first
stage of breast cancer, in which malignant cells proliferate inside the milk duct or lobule,
increasing pressure on the basement membrane; at some point, they may breach it to invade
the surrounding tissue [463]. As tumour cells proliferate within the duct, they will eventually
die. Calcium deposits form within the remains of these cells, which can be identified through
imaging. Since mammography images may be difficult to interpret, Gavaghan et al [232] used
breast carcinoma to illustrate how mathematical modelling can aid in detection, diagnosis
and treatment. The authors discussed models underpinning mammography image analysis,
which complement tumour growth models. They gave an overview of the primary image
enhancement technologies, as well as a detailed description of their recent work in physics-
based modelling in mammography. The goal of this theoretical approach to image analysis
was to yield information that could be incorporated into the mathematical models.

Xu ( [563] used the radially symmetric tumour model of Byrne and Chaplain [89] to study
spatial patterns (e.g. stripes, spots and uniform distributions) shown by the stationary model
solutions, noting that they were consistent with morphologies commonly observed in DCIS.
In the model, diffusion of cell substrates limits tumour growth and the duct wall is assumed
rigid; local pressure and cellular density are neglected. Franks and co-workers developed
models that account for these effects [186–188], coupling existing models of avascular tumour
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growth in a cylindrically symmetric tube with mechanical models for the finite deformation
of a compliant basement membrane. The coupling was mediated by interactions between the
expansive forces of cell proliferation and the stresses that develop in the membrane (Epstein
and Johnston [175]). Cell movement was described by a Stokes flow constitutive relation,
and the effects of the material properties (i.e. the viscosity) on the tumour shape, as well as
the extent to which cells adhere to the duct wall, were studied Franks et al [186]. It was
shown that stable, non-planar, interface configurations result; during the initial progression
before the duct wall is breached, few cells die and a nutrient-rich model can be sufficient to
capture the behaviour. In further work, Franks et al [187], interactions between the expansive
forces created by cell proliferation and the stresses that develop in the compliant basement
membrane were investigated, showing how the duct wall deforms during tumour growth, and
how tumour progression along the duct depends on wall stiffness. Key model parameters were
varied to determine how treatment, protease production and the inclusion of the surrounding
stroma affect this growth.

These models provided insight into DCIS progression and generated hypotheses to be
tested experimentally, e.g. the pressure on the duct wall is likely to be greatest at the tumour
centre, indicating the likely location where the wall will be breached [186]. The model was also
used to test hypotheses for the localization of proteases that may compromise the wall. Model
simulations and asymptotic analyses suggested that elevated pressure, rather than hypoxia, is
more likely to stimulate protease production and localization near the wall [188]. There is
experimental evidence that in addition to stimulating protease production, local pressure may
lead to basement membrane degradation through the death of myoepithelial cells, which are
between the epithelial cells and the membrane [357].

The role of the microenvironment in breast cancer progression has been extensively
studied by Gatenby and co-workers through both mathematical models and experiments
(e.g. [181, 224–226, 228, 230, 239, 240). Although an evolutionary sequence of genetic
malformation is observed in this progression, tumour growth is constrained by acidosis
and hypoxia, which develop as cells proliferate into the avascular duct lumen. In order
to survive, cells adapt to these adverse conditions by evolving acid-resistant and glycolytic
phenotypes, which may be critical for invasion. The models show severe acidosis and hypoxia
in regions more than 100 µm from the basement membrane of intraductal tumours, with
invasive proliferation following the development of acid-resistant and glycolytic phenotypes.
This hypothesis is supported by experimental and clinical evidence showing that growth into
normoxic regions follows adaptation to hypoxia (e.g. [230]). An example of this is shown in
figure 19 using a discrete cellular automaton model (described below).

3. Discrete modelling

In recent years, there has been much research using discrete methods to model tumour growth,
invasion and angiogenesis. In this approach, individual cells or subcell elements are explicitly
tracked and updated according to a set of biophysical rules. Discrete, or individual-based,
models are generally divided into two categories: lattice-based (cellular automata) and lattice-
free. In lattice-based modelling, the cells or subcellular elements are confined to a regular
lattice. In lattice-free models, these elements may be placed anywhere throughout space.
Typically, discrete models involve a composite discrete-continuum approach in the sense that
substrate concentrations (e.g. oxygen, glucose, matrix-degrading enzymes, etc) are described
using continuum fields while the cell-based components are discrete. See the reviews by
Alber et al [12], Moreira and Deutsch [381], Drasdo [159], Araujo and McElwain [34],
Quaranta et al [439], Hatzikirou et al [260], Nagy [389], Abbott et al [1] Byrne et al [88],
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Figure 19. Study of ductal carcinoma in situ (DCIS) using the mathematical model of Gatenby and
co-workers [230] (colour online). Simulations show potential evolutionary pathways in carcinoma
in situ. (a) Simulations start with a single layer of normal epithelial cells (grey cells) on a basement
membrane. (b) Initial growth occurred only when mutations produced a hyperproliferative
phenotype (pink cells) through mutations (in oncogenes, tumour suppressor genes, etc); growth into
the lumen eventually ceased due to hypoxia and acidosis. Without additional cellular evolution,
this population remains limited. Additional growth occurred following two possible sequences: (1)
heritable changes that upregulate glycolysis. This population with constitutive upregulation (green
cells) (c) allows this new population to replace the hyperplastic cells and to extend further into the
lumen. However, clonal expansion is eventually limited by acid-mediated toxicity. This promotes
evolution of a glycolytic, acid-resistant phenotype (yellow cells) which rapidly replaces all other
extant populations in a highly aggressive, infiltrative pattern extending to the basement membrane
and farther into the lumen (d). (2) A second pathway begins with development of an acid-resistant
population (blue cells). This population expands and replaces many of the hyperplastic population
(e) but growth remains limited by hypoxia promoting emergence of a phenotype with upregulated
glycolysis and acid resistance (yellow cells) identical to the population in (c). Unlike in (c), this
phenotype initially grows into the normoxic region forming nodules of varying size (f ), which
eventually coalesce into a pattern essentially identical to the appearance in (d). Reprinted with
permission from Gatenby et al Br. J. Cancer 97 649. Copyright © 2007 Nature Publishing Group.

Fasano et al [182], Galle et al [213], Drasdo and Höhme [163], Thorne et al [519], Anderson
et al [27], Deisboeck et al [150], Anderson and Quaranta [30], Quaranta et al [438] and Zhang
et al [573]. Here, we briefly present several approaches to discrete modelling. Other examples
and a more comprehensive list of references can be found in the review papers listed above.

In recent work, Rejniak [445, 446] developed a highly detailed approach to modelling
the evolution of solid tumours. Each individual tumour cell is modelled using the immersed
boundary method (e.g. see the review Peskin [412]. The cell is represented as the interior of an
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Figure 20. Discrete tumour modelling showing several (eukaryotic) cells from Rejniak [446]. The
dots are cell–boundary points which connected by linear springs (thin lines) to model the elastic
cell membrane. The interior circles denote cell nucleii. Cell–cell adhesion is also modelled using
linear springs between cells (thick lines). Reprinted with permission from Rejniak 2007 J. Theor.
Biol. 247 189. Copyright © 2007 Elsevier.

elastic membrane with the nucleus represented as an interior point. In addition to the elastic
forces, cell–cell adhesion and cell contractile forces are modelled using linear springs to mimic
a discrete set of membrane receptors, adhesion molecules and the effect of the cytoskeleton on
cell division, respectively (see figure 20). The cytoplasm and extracellular liquid are modelled
as viscous, incompressible fluids. Elastic, adhesion and contractive forces impart singular
stresses on the intra- and extra- cellular fluids. Cell proliferation is modelled by introducing
a point source in the interior of the cell to increase its volume. Contractile forces act on
opposite sides of the cell to create a neck that pinches off to produce two approximately equal-
sized daughter ‘drops’ (figure 21). Nutrient is supplied via diffusion and is modelled using
continuum reaction–diffusion equations where the uptake term depends on the cell locations.
In figure 22, the progression of an avascular tumour is shown. Note the proliferating cells
(grey) at the (irregular) leading edge, followed by quiescent (white) and necrotic cells (black)
in the interior. The model can describe individual cell morphology, although the method is
computationally expensive thus restricting the number of cells to about 100. This work was
later extended by Rejniak and Dillon [449] to incorporate a more realistic description of the
cell membrane (two closed curves connected by springs) that better represents the lipid bilayer
structure. In addition, sources and sinks are placed in the cell membrane to provide a model
of water channels.

The cell-immersed boundary model has subsequently been used by Rejniak and Dillon
to study preinvasive intraductal tumours, and by Rejniak and Anderson [447, 448], to study
the formation and stability of epithelial acini. These structures form a basic building block
of ducts in the breast and prostate, for example. Epithelial acini consist of a single layer of
polarized endothelial cells enclosing a hollow lumen surrounded by a basement membrane and
extracellular matrix. Genetic abnormalities in the endothelial cells may result in abnormal acini
and ductal carcinoma. The immersed boundary model was further used by Dillon et al [157]
and Anderson et al [31] to study the effects of nutrient availability, cell metabolism and
phenotypic characteristics affecting the growth and stability of growing avascular tumours.
The instabilities observed are in qualitative agreement with earlier continuum models (Cristini
et al [129], Zheng et al [575], Li et al [339], Macklin and Lowengrub [350]) and cellular
automaton models (e.g., Anderson [26], Anderson et al [32] and Gerlee and Anderson
[234, 235]) discussed below.
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Figure 21. The phases of cell proliferation from Rejniak [446]. (a) The cell begins the mitotic
cycle (the interphase); (b) the anaphase—formation of daughter nucleii and an increase in cell
volume; (c) the telophase—formation and pinchoff of contractile ring and (d) cytokinesis—the
formation of two daughter cells. Reprinted with permission from Rejniak 2007 J. Theor. Biol. 247
190. Copyright © 2007 Elsevier.

A less detailed, but still cell-based approach, has been developed using the extended
Q-Potts model which is adapted from Ising models in statistical physics and was originally
developed to model surface-diffusion grain growth in materials science (e.g. Anderson et al
[33]). Graner and Glazier [243, 247] adapted the Q-Potts model to simulate cell-sorting through
differential cell–cell adhesion. In this approach, now referred to as the GGH (Graner–Glazier–
Hogeweg) model, each cell is treated individually and occupies a finite set of grid points within
a Cartesian lattice; space is divided into distinct cellular and extracellular regions. Each cell
has a finite volume and a deformable shape. Cell–cell adhesion is incorporated through an
energy functional. A Monte Carlo algorithm is used to update each Cartesian lattice point and
hence change the effective shape and position of a cell. Although the description of the cell
shape is less detailed than in the immersed boundary approach described above, finite-size cell
effects are incorporated.

Stott et al [499] incorporated nutrient-dependent mitosis and necrosis in the GGH model to
simulate the growth of benign, multicellular avascular tumours to a steady state. A continuum
reaction–diffusion equation for nutrient was used. The steady-state configuration consists of
an area of central necrosis surrounded by quiescent cells and an outermost shell of proliferative
cells. Parameters are determined such that the thickness of these regions matches experimental
results. Turner and Sherratt [527] later extended the GGH model by incorporating the ECM, the
secretion of matrix-degrading enzymes, haptotaxis and adhesion-controlled mitosis to study
tumour invasion. More generally, the GGH model has also been extended to account for
chemotaxis [469], cell-differentiation [273] and cell-polarity [570]. Jiang et al [294] further
modified the GGH model to include a subcellular model of a protein expression regulatory
network for the cell-cycle as well as incorporating growth promoters and inhibitors through
continuum reaction–diffusion equations. Parameter values were determined such that the
model produced avascular tumours that quantitatively replicate experimental measurements of
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Figure 22. Evolution of a 2D avascular tumour from Rejniak [446]. Grey: proliferating cells;
white: quiescent cells and black: necrotic cells. Reprinted with permission from Rejniak 2007
J. Theor. Biol. 247 194. Copyright © 2007 Elsevier.

spheroids in culture. The GGH model has also been used to simulate vasculogenesis by Merks
et al [373–375], by including a model of contact inhibition, and by Bauer et al [51] in the context
of tumour-induced angiogenesis in a heterogeneous tumour microenviroment. Rubenstein and
Kaufman [458] recently studied the role of ECM in glioma invasion using a version of the
GGH model. Scianna et al [473] used the GGH model to simulate cell scatter in MLP-29
mouse embryo liver cell tumours in response to hepatocyte growth factor. Very recently,
Poplawski et al [422] studied the morphological evolution of 2D avascular tumours using the
GGH model and developed a phase diagram characterizing the development of instabilities
at the tumour/host interface and tumour morphologies with critical parameters measuring
diffusional limitations (ratio of growth rate to diffusion rate) and cell–cell adhesiveness. In
particular, they find that the development of instability depends primarily on the diffusional
limitation parameter while the morphology details depend on cell–cell adhesion. The results are
consistent with previous simulation results by Cristini et al [126, 129], Rejniak [445], Li et al
[339], Macklin and Lowengrub [350], Gerlee and Anderson [234, 235] and Anderson et al [31].

Another Monte Carlo based model that incorporates finite cell size was developed by
Drasdo et al [164] in the context of epithelial cell, fibroblast and fibrocyte aggregates in
connective tissue. In this approach, the cells are simplified and consist of a roughly spherical
space about a centre region. The cells are slightly compressible and are capable of migration,
growth and division. An undividing cell is taken to be spherical. As a cell undergoes the
mitosis process, it deforms into a dumbbell shape until its volume increases roughly by a
factor of 2 and then divides into two daughter cells. Adhesion and repulsion (from limitations
on cell deformation and compressibility) among cells are modelled using an interaction energy
that describes nearest-neighbour interactions. Mitosis or cell migration may induce pressure
on neighbouring cells. The cells respond by changing their mass or orientation to minimize
the total interaction energy via a stochastic Metropolis algorithm [376]. Note that in related
work, Palsson and Othmer [403] modelled cells as deformable viscoelastic ellipsoids (see also
Dallon and Othmer [144]).

Drasdo and Höhme [161] adapted the above Monte Carlo approach to avascular tumour
spheroids in the early stages where growth is not primarily determined by oxygen or nutrient
supply but is affected by volume exclusion due to limited cell compressibility. By comparing
the results with experiments on tumour spheroids by Freyer and Sutherland [190] estimates
were made for the biomechanical and kinetic parameters in the model. In later work, Drasdo and
Höhme [162] extended the model to account for nutrient (glucose) limitations to growth, cell-
necrosis and lysis of necrotic cells and simulated the spatio-temporal growth dynamics of
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two-dimensional tumour monolayers and three-dimensional tumour spheroids. Values of the
model biophysical and kinetic parameters were drawn from the experimental literature. The
model suggests that the transition from exponential to sub-exponential growth that is observed
in experiments when the tumour is sufficiently large is due to biomechanical growth inhibition.
Glucose deprivation was found to primarily determine the size of the necrotic core but not
the size of the tumour. Galle et al [215] extended the model to incorporate cell–substrate
contact-dependent cell death (anoikis [500]) and studied monolayer cell growth of epithelial
cells. They found that inactivation of cell–substrate contact-dependent cell-cycle arrest, cell–
substrate-dependent programmed cell death or cell–cell contact mediated growth inhibition
can lead to epithelial tumour growth. In the context of growing monolayers, Drasdo [160]
showed how the finite-sized Monte Carlo approach can be used to determine the rules for
a simpler cellular automaton model (in which cells have zero size, see below) and how the
cellular automaton model can be used to derive a continuum model with contact inhibition by
coarse-graining thereby providing a link between different scales and biophysical processes.
A similar study was performed by Byrne and Drasdo [94] who presented further analysis
of the continuum model. Radszuweit et al [440] used these models to analyse the effect of
geometry and investigated the differences in growth in cell populations in 2D and 3D. Höhme
and Drasdo [266] investigated the effects of biomechanics and nutrient to determine their
relative importance on the growth of cell populations. Ramis-Conde et al [444] incorporated
the dynamics of E-cadherin–β-catenin interactions to obtain a more realistic model of cell–cell
adhesion (E-cadherins are cell–cell adhesion proteins; β-catenin binds the membrane-bound
E-cadherins to the cell cytoskeleton). This detailed model is capable of describing detachment
of cells from a primary tumour and the corresponding epithelial-to-mesenchymal transition.
Ramis-Conde et al [443] extended this model to simulate tumour cell intravasation into blood
vessels and investigated the role of cadherins in metastasis. Galle et al [214] incorporated cell–
matrix interactions and stroma contact-dependent cell regulation as well as cell-differentiation.
They studied the effect of cancer stem cell organization on tumour growth. They found that
when stem cells are located on the tumour/host boundary this may result in more rapid invasion
of the host tissue than if the stem cells were confined to the tumour interior.

Following earlier work by Honda et al [277], Meineke et al [371] and Brodland and
Veldhuis [77], Schaller and Meyer-Hermann [470, 471] modified the approach described above
and represented cells as Voronoi polyhedra in three dimensions (e.g. polygonal boundaries)
instead of deformed spheres thus enabling a more realistic description of densely packed
cells. Schaller and Meyer-Hermann also incorporated a description of the cell cycle into their
model and considered the effects of both oxygen and glucose. By matching their results with
experiments on tumour spheroids, they find that the ratio of oxygen to glucose uptake ratio
should be about 1 : 5; their model predicts the number of cells in each phase of the cell cycle
for different concentrations of oxygen and glucose.

Models in which cells are represented by discrete points (i.e. variations in cell size and
shape are not considered) give a still less detailed discrete approach. Cells can be interpreted as
having a fixed size (e.g. ranging from 5–20 µm in radius). These methods can be both lattice-
based (cellular automata) and lattice-free (agent-based). An advantage of these algorithms is
that due to their simplicity, they are easier to implement and can be solved more efficiently than
the more detailed discrete methods described above. Here, we present a few recent examples.
Further references may be found in the review papers listed above.

Kansal et al [303, 305] developed a cellular automaton model to simulate the growth of
2D and 3D brain tumours using an adaptive Delaunay triangulation (Voronoi tessellation) to
minimize grid-induced anisotropy. The density of lattice sites varies throughout space (e.g.
larger site density in the centre of a tumour) where the lattice size reflects the number of cells
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represented. Simulations were performed for avascular, multicell spheroids and reproduce a
Gompertzian growth pattern. The authors then used this approach to investigate the emergence
of subclonal subpopulations [304]. In Gevertz and Torquato [238], this approach was extended
to incorporate a dynamic model of angiogenesis where a random analogue of a Krough cylinder
model was used to model the regression and sprouting of a tumour-induced neovasculature.
The vasculature development is coupled with the growth of the tumour. Simulations were
performed of vascular brain tumour growth at early stages. This work was later extended by
Gevertz et al [237] to simulate tumour growth in confined, heterogeneous environments.

Anderson et al [29] developed a cellular automaton model of solid tumour growth focused
on four variables related to tumour invasion: tumour cells, host tissue (ECM), matrix-degrading
enzymes and oxygen. The latter three are continuous (concentrations) while tumour cells
are discrete (individuals). Cells move via a biased random walk on a Cartesian lattice; the
coefficients of a discretized version of the partial differential equation governing the tumour cell
density to generate probabilities of movement. The transition probabilities are similar in spirit
to the gradient model developed earlier by Othmer and Stevens [398] in the context of cell-
chemotaxis. The cells produce matrix-degrading enzymes and respond haptotactically to the
density of extracellular matrix. Cell–cell adhesion was not considered. The model predicts a
greater extent of local tumour invasion in a heterogeneous extracellular matrix than is predicted
by the analogous continuum model. This approach has been generalized by Anderson and co-
workers to include cell–cell adhesion, different clones (mutations) and phenotypes as well as
other effects and processes (see below).

Patel et al [408] described a cellular automaton model to simulate early tumour growth,
and examined the roles of host tissue vascular density and tumour metabolism in the ability
of a small number of monoclonal transformed cells to develop into an invasive tumour [408].
The model was two-dimensional and incorporated continuum hydrogen ion and glucose fields
obeying partial differential equations. This work was later extended by Smallbone et al [486])
and Gatenby et al [230] to incorporate different phenotypes and mutations. Smallbone et al
show that space and nutrient limitations are sufficient to drive the emergence of hyperplastic,
glycolytic and acid-resistant phenotypes that have the capability to breach the basement
membrane and form an invasive tumour.

Schmitz et al [472] studied the effects of treatment by extending an automaton model
of brain tumour growth, finding that spatial location, i.e. confinement, downgraded the
competition of resistant clones with respect to the sensitive cells. As a result, the fraction
of resistant cells is a less important indicator of patient prognosis when the cells are confined.
If mutations arise in response to treatment, tumours with both very frequent and very infrequent
mutations develop with more spherical geometries, while tumours with an intermediate level
of mutations display multi-lobed geometries, where mutant strains are at localized points on
the surface of the tumours. Mansury et al [360] incorporated cell migration and a simple model
of mechanical resistance to movement in a cellular automaton model of tumour growth. By
allowing cells to search both locally and globally for a more growth-promoting environment,
the model shows that a phase transition may occur such that if the search is global, a few large
clusters form with a short lifespan while if the search is local, many small slower-growing and
longer-lived clusters form.

Dormann and Deutsch [158] developed a lattice-gas cellular automaton method for
simulating the growth and size-saturation of avascular multicell tumour spheroids (see also
the book [154] by the same authors). Unlike traditional cellular automaton methods where
one cell can be at a single grid point (volume exclusion), lattice-gas models accommodate
variable cell densities by allowing multiple cells at a single grid point by allowing separate
channels of movement. The channels specify direction and velocity magnitude, which may
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include zero velocity resting states. Lattice-gas models typically require channel-exclusion-
only one cell may occupy a channel at any time. This approach has later been used by
Hatzikirou et al [262] to study travelling fronts characterizing glioma cell invasion. Very
recently, Hatzikirou et al [259] performed a mean field analysis of a lattice-gas model of
moving and proliferating cells to demonstrate that certain macroscopic information (e.g. scaling
laws) can be accurately obtained from the microscopic model. Accurate predictions of other
macroscopic quantities that sensitively depend on higher order correlations are more difficult
to obtain.

Chen et al [121] developed a stochastic model for the growth of a heterogeneous solid
tumour by deriving a master equation that accounts for two tumour-cell types. Explicit
expressions governing the variances and covariance were obtained and simulations were
performed to determine the evolution of the cell populations and their uncertainty.

Alarcón et al [10] developed a mathematical model to show how blood flow and red blood
cell heterogeneity influence growth of normal and cancerous cells; these were considered as
elements of a cellular automaton, with evolution rules determined from different behaviour of
normal and cancer cells. These authors also used a physiologically structured lattice model for
vascularized tumour growth that accounts for interaction between cancerous and normal tissue,
cell division, apoptosis, blood flow and structural adaptation of the vasculature, transport of
oxygen and release of vascular endothelial growth factor [11]. Effects of nutrient heterogeneity
as well as growth and invasion of cancerous tissue were investigated. This work was later
extended by Owen et al [399] to model tumour growth coupled with dynamic network models
for the vasculature.

Building on the earlier work of Anderson et al (2000), Anderson (2005) extended the
cellular automaton model to include cell–cell adhesion. Cell–cell adhesion is modelled
by weighing the probability of motion by the number of desired neighbours. Different
cell adhesion phenotypes are incorporated by different numbers of desired neighbours and
proliferation and nutrient uptake rates. The microenvironment plays an important role through
cell–extracellular matrix (ECM) interactions. In the model, cells degrade the ECM which
produces and maintains nutrient gradients through uptake by cells. This model enabled
evaluation of how individual cell– and cell–matrix interactions may affect the tumour shape.
This work was extended [32] to provide a theoretical/experimental framework to quantitatively
characterize tumour invasion as a function of microenvironmental selective factors. Mutations
are assumed to occur randomly; in [32], 100 different phenotypes are considered. Cell
genotypes may evolve to support invasion driven by definable microenvironmental selective
forces. In agreement with the findings of Cristini et al [126, 129, 194, 575], conditions such
as hypoxia and heterogeneous extracellular matrix were found to induce invasiveness through
fingering tumour margins, and dominated by more aggressive cell phenotypes. The evolution
of an avascular tumour using this approach is given in figure 23. The colour gradiations
correspond to different cell phenotypes (necrotic–black, dark grey—highly proliferative and
invasive (low adhesion), lighter grey—quiescent). Gerlee and Anderson [235] used a simpler
version of this model to investigate complex branched growth patterns that arise during cell
colony growth under nutrient limited conditions. In agreement with earlier stability analyses
(e.g. [129]) the stability of the growth was found to depend on how far the nutrient penetrates
into the colony. For low nutrient consumption rates the penetration distance was large, which
stabilized the growth, while for high consumption rates the penetration distance was small,
which led to unstable branched growth. By extending this approach to include a feed-forward
neural network to model the decision-making mechanisms governing the evolution of cell
phenotype, Gerlee and Anderson [234, 236] demonstrate how the oxygen concentration may
significantly affect the selection pressure, cell population diversity and morphology of a tumour.
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Figure 23. Evolution of a 2D avascular tumour from the discrete model of Anderson [26]. The
gradations of colour correspond to different cell phenotypes. The centre region contains necrotic
cells. At late times, the outermost region contains the most aggressive cells (highly proliferative,
low cell–cell adhesion). Reprinted with permission from Oxford University Press, Anderson 2005
Math. Med. Biol. 22 178.

Gerlee and Anderson [236] later extended this model to study the emergence of a glycolytic
phenotype. Their results suggest that this phenotype is most likely to arise in poorly oxygenated
tissue with large matrix density. More recently, Piotrowska and Angus [415] extended this
model to incorporate multiple cells at each cellular automaton lattice site and studied the effects
of necrosis in avascular tumour growth. In particular, their model suggests that acidity is not
sufficient to initiate necrosis before nutrient levels drop below levels needed for cell viability.

Bartha and Rieger [50] developed a cellular automaton algorithm to track coupled tumour
growth and tumour-induced neovascularization using a discrete approach for both. Each lattice
point may be occupied by a tumour cell and/or a blood vessel with a particular radius which
is determined by the blood flow rate and wall shear stress. The evolution of each follows a
stochastic process involving proliferation, migration and death on a rectangular grid. Nutrient
and growth factor concentrations are modelled using approximations of Green’s functions to
the diffusion operators. Simulations reveal that vascular collapse in a few critical segments
can dramatically influence the flow through the network and the tumour progression. This
work was used by Lee et al [330] to develop a theoretical model of tumour vascularization
using percolation theory. They suggested that vascular collapse in the tumour centre leads to a
percolation process driven towards criticality by vessel stabilization due to increased blood flow
in the remaining vessels. Welter et al [548] extended the model by incorporating the Fahraeus
effect and refining the simulation of oxygen. Welter et al [548] found that vessel regression and
collapse may increase perfusion due to the fact that their tumour was vascularized primarily
co-option of the existing vasculature. Welter et al [549] recently extended the model to account
for an arterio-venous network.

Mantzaris [361] developed a Monte Carlo algorithm to simulate the dynamics of
heterogeneous cell populations, taking into account the intrinsic randomness of cell division
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and the unequal partitioning of cellular material at cell division. The effects of genetic
mutations in a tumour cell population have also been studied, for example, as a continuous
model of cell densities coupled with a discrete model of the cell cycle [451]. Mansury
and Deisboeck [359] presented a numerical agent-based model of tumour cells to study the
molecular, microscopic and multicellular patterns that emerge from various interactions among
cells and their environments. Mallet and Pettet [355] developed a model of haptotaxis which
includes a description of integrin activation, local recruitment and protrusion from the cell
body. In the model, the cell aggregate was then able to respond to a gradient of cell–matrix
adhesion, represented by functionally active integrins.

Wang et al [542] developed a multiscale model to study the growth of non-small cell lung
cancer within a 2D microenvironment, implementing a specific intracellular signal transduction
pathway between the epidermal growth factor receptor (EGFR) and extracellular receptor
kinase (ERK) at the molecular level. Phenotypic changes at the cellular level were triggered
through dynamical alterations of these molecules. The results indicated that for this type of
cancer, downstream EGFR–ERK signalling may be processed more efficiently in the presence
of a strong extrinsic chemotactic stimulus, leading to a migration-dominant cell phenotype
and an accelerated rate of tumour expansion. Zhang et al [571] presented a three-dimensional
multiscale agent-based model to simulate the cellular decision process to either proliferate
or migrate in the context of brain tumours. Each cell was equipped with an EGFR gene–
protein interaction network module that also connected to a simplified cell-cycle description.
The results show that proliferative and migratory cell populations directly impact the spatio-
temporal expansion patterns of the cancer. This was later refined by Zhang et al [572] to
incorporate mutations representing a simplified tumour progression pathway. Very recently,
Quaranta et al [438] examined interactions between the tumour microenvironment and cancer
cells at various scales using cell-based discrete mathematical models.

Ramis-Conde et al [442] developed an individual-based lattice-free model of solid tumour
growth where the tumour cells interact with one another through a potential function which
incorporates cell-attraction and repulsion. The cells respond by moving down gradients
of the potential but may also undergo haptotaxis up gradients of extracellular matrix and
chemotaxis up gradients of a chemical agent, both of which are modelled as continuum
variables. Simulations show finger-like invasions of tumour cells where the leading cells
degrade the extracellular matrix to form a channel and the trailing cells follow a gradient of
chemoattractant released by the degraded ECM in their wake. Another stochastic agent-based
model of tumour growth was developed recently by Gomez-Mourelo et al [245]. Their model
extends the Anderson cellular automaton model by removing the lattice-based constraint,
and incorporating an age-structure. Gomez-Mourelo et al derive a macroscopic system that
describes the limiting behaviour of the discrete model, when the number of cells tends to
infinity. Simulations show that that the limiting macroscopic system of partial differential
equations and the agent-based model yield similar results for tumour fingering patterns.

4. Hybrid modelling

4.1. Overview

An important research direction for the future involves the development of hybrid continuum–
discrete models for tumour growth. Hybrid models have the potential to combine the best
features of both continuum and discrete approaches, and may provide more realistic coupling
of biophysical processes across a wide range of length and time scales. As mentioned earlier,
there are two types of continuum–discrete models. In the first, which we term composite
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models, tumours are represented as the sum total of discrete elements (e.g. cells) while
cell substrates (e.g. nutrients, growth and other chemical factors) and ECM are represented
as continuum variables. There have been many models developed using this approach
(see section 3). In the second type, which we term hybrid models, the tumour itself is
described using both continuum and discrete components. There have been far fewer efforts
to simulate tumour growth using the second approach. However, we believe that hybrid
modelling is very important as it affords the possibility of seamlessly upscaling from the
cell-scale to the tumour and tissue scales. Because of the computational cost, it would be
very difficult to reach this range of scales using models where the tumour cell colonies are
only described using discrete cells although there are now techniques for accelerating these
methods such as the heterogeneous multiscale method (e.g. [167]) and the equation-free method
(see below).

4.2. Background

In an early study, Othmer and Stevens [398] derived general classes of partial differential
equations to study the continuum limit of reinforced random walks of discrete cells where
the cells move in response to chemical signals, and found that a variety of dynamics could
occur in a cell population, e.g. aggregation, blowup or collapse. As a way to bridge multiple
time scales, Setayeshgar et al [476] developed a numerical evolution scheme for a class of
stochastic problems in which the temporal evolution occurs on widely separated time scales,
and for which the slow evolution can be described in terms of a small number of moments of an
underlying probability distribution. Setyehsgar et al (2005) applied this approach to simulate
the motion of non-interacting bacteria cells in the presence of a chemoattractant. This work
combined a kinetic Monte Carlo method, to model bacteria motility, and a continuum ordinary
differential equation inner solver, to model signal transduction internal to the bacteria, with
a projective integration outer solver. The authors showed that projective time integration of
coarse variables (e.g. bacteria densities) could be carried out on time scales long compared
with that of the microscopic dynamics. In particular, numerical results and analysis of errors
in support of the efficacy of this integration were presented. The algorithm provided a means
to integrate the effective macroscopic equations, which were not known explicitly.

Connecting the cell-scale with the tumour scale is a challenge in cancer modelling. Erban
and Othmer [177] provided a connection between the micro- and macro-scales describing
bacterial chemotaxis by deriving the macroscopic description from a microscopic model of
the behaviour of individual cells. In the model, each bacterium was assigned an internal
state that evolves according to a system of ordinary differential equations forced by a time-
and/or space-dependent external signal. The turning rate was a function of the internal state
of the cell, which in turn depends on the external signal. Solutions of the macroscopic
equations agreed well with Monte Carlo simulations of individual cell movement. Erban
et al [176] then used simplified versions of these continuum and discrete models to test the
efficiency and accuracy of equation-free methods to accelerate the discrete random walks
models. The equation-free approach, developed earlier by Kevrekidis et al [309] (see also the
review by Li et al [338]) leverages spatio-temporal scale separation to allow significant gains
in computational efficiency by alternating short, localized bursts of appropriately initialized
microscopic simulations with accelerated processing of the results (e.g. temporal ‘jumping’) at
the macroscopic, continuum scale. In particular, certain macroscopic variables such as the cell
density may vary smoothly over relatively long space and time scales while macroscopic details
have rapid fluctations over small space and time scales. Although the macroscopic equations
for the cell densities are known in the specific example of chemotaxing cells considered
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by Erban et al (2006), the equation-free approach may be applied to systems in which the
coarse-scaled continuum governing equations are unavailable and too difficult to explicitly
derive. Erban et al (2003) obtained a decrease in computation time by over a factor of 1000
using the equation-free approach to simulate large number of chemotaxing cells. Later, Bold
et al [70] proposed an equation-free approach to model the collective dynamics of populations
of coupled, heterogeneous biological oscillators.

4.3. Coupled continuum–discrete descriptions of tumour cells

Recently, Kim et al [317] and Stolarska et al [498] coupled an agent-based algorithm, to model
cells in the outer proliferating rim of an avascular tumour, with a continuum description of
cells in the inner quiescent and necrotic regions of the tumour. The extracellular matrix and
cell substrates (e.g. oxygen and glucose) are also modelled as continuum fields. The idea is
that a millimetre-sized tumour spheroid contains on the order of 106 cells, which is too many to
feasibly simulate using a direct individual-based approach. On the other hand, the proliferating
rim of cells is much smaller—on the order of 100–200 µm in thickness—and contains about
10 times fewer cells. While this is still a significant number, a discrete simulation is somewhat
more feasible if one uses an accelerating algorithm such as the equation-free approach described
above. In the much larger quiescent and necrotic regions, it is much more efficient to use a
continuum description.

Kim et al defined four geometrically distinct regions. These are, from the outside to the
inside of a tumour, the extracellular matrix or culture medium surrounding the tumour, a region
of proliferating cells at the outer edge, a quiescent zone bordering the proliferating region, and
a necrotic core (see figure 24). The cell-based component described the mechanical interaction
of cells with the surroundings, how an individual cell (modelled as an ellipsoid) reacts to forces
on it, and how growth and division are described and the effect of stress on them. The cell-based
component extends an earlier model developed by Dallon and Othmer [144] to include growth
and cell division. The cell description accounts for forces the cells induce on one another
and the extracellular matrix, dynamic drag forces that arise as a cell changes the number of
attachments with neighbouring cells and a static frictional force that models rigid attachment to
other cells or the extracellular matrix. Forces are transferred from the discrete cell system to the
continuum by interpolation from the discrete cells to the nearby nodes of a mesh triangulation
on which the continuum problems are posed. A linear viscoelastic model is assumed to hold
for the stress in the continuum regions. As discrete cells in the proliferative region become
quiescent, and vice-versa as quiescent cells become proliferative, a least-squares projection
algorithm is used.

In figure 24 evolution of a tumour spheroid in the absence of an outer gel is shown from
Kim et al (2007). The discrete cells, numbering 253 at t = 43 h, are indicated by the dark
small circles; the spatial unit is 10 µm. Adjacent to the discrete cells is a quiescent region and
necrosis occurs in the inner (white) region. As the tumour grows, slight asymmetries form
because of variations introduced in part by the sequential updating of cell states in addition
to the variations in nutrient fields due to slightly different cell sizes that drive asymmetries in
proliferation, quiescence and necrosis rates. By treating the proliferating cells using a discrete
model, this approach enables the use of greater biological detail than would be the case had
the description of cell growth been fully continuous. For example, the effect of variations in
cell-cycle time, intra and intercellular mechanics and adhesiveness, cell size and shape can be
examined.

In very recent work, Bearer et al [55] and Frieboes et al (in preparation) [192] have
developed an alternate approach to tumour modelling using both continuum and discrete
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Figure 24. Hybrid tumour modelling: evolution of a tumour spheroid in the absence of the outer
gel from the study by Othmer and co-workers [317]. Necrosis is represented by the inner (white)
region; it is enclosed by the continuum quiescent region and the outer cell-based region (space
unit = 10 µm). Reprinted with permission from Kim et al Math. Models Methods Appl. Sci. 17
1790. Copyright © (2007) World Scientific.

descriptions of tumour cells. In their approach, both the continuum and discrete representations
of tumour cells are used simultaneously throughout space, subject to mass and momentum
conservation laws which incorporate interactions among the discrete and continuous fields.
An agent-based, lattice-free model is used for discrete cells. The discrete cells are assumed
to have zero size. A circular random walk model, that incorporates chemotaxis, haptotaxis
and volume exclusion such that two cells cannot occupy the same position in space, is used
for the discrete cells. The cells may also respond to the velocity induced by the continuum
volume fractions and compete with the continuum description for nutrients. Accordingly,
additional spatially localized uptake terms are introduced in the nutrient transport equation (76)
to represent nutrient uptake by the discrete cells. The continuum volume tumour cell volume
fractions are obtained from a mixture model of the type described in section 2.5.3 (see also
Wise et al [555].

In Bearer et al and Frieboes et al (in preparation), the discrete cells arose in hypoxic regions
of the tumour due to the downregulation of cell–cell and cell–matrix adhesiveness. This may
represent an epithelial-to-mesenchymal transition from collective motion to individual motion
and is consistent with experimental observations of the effects of hypoxia [197, 198, 267, 302].
Bearer et al did not account for any interaction forces in the discrete and continuum cell
descriptions. However, as mentioned above, discrete cells may respond to the velocity induced
by cell proliferation and cell adhesion in the continuum tumour fields.

The mass conservation equation for the continuum cells accounts for the exchange of
mass from the continuum-to-discrete representations (and vice-versa). Assuming that there is
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a single clone of viable tumour cells as was done in Bearer et al (2009), mass is exchanged from
the continuum to the discrete fields via a rate of exchange function. Suppose it is determined
that at a location xi a discrete cell should be created. For example, in Bearer et al (2009),
such locations are identified in regions of hypoxia. The rate of exchange of mass from the
continuum to the discrete field may be taken to be [55]

Sc→d(x, t) =
∑

i

Sc→d
i , where Sc→d

i = CextractφV(x, t)G(x − xi ), (78)

where Cextract is a rate of extraction, φV is the volume fraction of viable tumour cells and
G(x − xi ) is a function localized around the region x ≈ xi . The total volume transferred
from the continuous to the discrete field in a time t , measured from the time tdetect when it is
determined that a discrete cell should be created, is Vi(t) = ∫ t

tdetect

∫
Sc→d

i (x, t) d� dt ′. Let
the time t = tcreate denote the time that Vc,i(tcreate) = Vcell, the target volume for a discrete
cell. At this time, a discrete cell is then created at the location xi . An analogous mass-
conserving algorithm is used to convert discrete cells into the continuum volume fraction field.
In regions where the density of discrete cells exceeds a threshold value due to either increased
proliferation or aggregation, the discrete cells are converted back to the continuum volume
fraction. Accordingly, the following source function is added to the continuum tumour cell
equation:

Sd→c =
∑

i

Sd→c
i , where Sd→c

i (x, t) = Cdeposit(1 − φV)G(x − xi ), (79)

where Cdeposit is a rate of conversion and the sum is taken over all cells in the high density
region. A cell is removed at time tremove when Vr,i(t) = ∫ t

tdetect

∫
Sd→c

i (x, t) d� dt ′ reaches the
cell target volume: Vr,i(tremove) = Vcell. Both the continuum and discrete cells uptake nutrients
and oxygen and thus an additional uptake term is incorporated to account for uptake by discrete
cells.

In figure 25, the evolution of a vascularized tumour using the scheme described above is
shown. Discrete cells (small blue dots) are released from hypoxic (perinecrotic) regions of the
continuum tumour description (grey surfaces). The cells move away from the tumour bulk and
up gradients of oxygen, which is supplied at the far-field boundary and from the newly formed
vasculature (dark brown curves). Vessel sprouts are also shown (yellow curves). A lattice-free
angiogenesis model is used and coupled to the tumour growth model following the methods
described earlier by Frieboes et al [193] in the context of glioma modelling (section 2.5.5).
As the discrete cells evolve, they degrade and remodel the extracellular matrix by laying down
fibronectin macromolecule networks. The cells respond to the remodelled microenvironment
by forming single-file like strands of palisading cells from low oxygen (perinecrotic regions)
to high oxygen environments. As the cells reach oxygen-releasing vessels, their proliferation
is upgraded and their motility is downgraded. As their density exceeds the threshold, the
discrete cells are converted back to the continuum and tumour microsatellites form around the
neovasculature. The vasculature also responds to the cell-proliferation pressure and vessels
are shut off and the vasculature regresses if the cell-pressure is sufficiently large. This can be
seen to occur around some of the newly formed continuum clusters. The resulting morphology
compares well with pathology data [55] for human brain tumour specimens.

In the simulation described above, the discrete cells interact with each other directly only
through a volume exclusion velocity and indirectly through the nutrient field as both continuum
and discrete cells uptake nutrients (and the availability of nutrients limits proliferation). To
incorporate further interactions between the continuum and discrete descriptions, we may
derive interactions among the continuum and discrete forces by introducing an energy that
accounts for both continuum and discrete effects. Then, by following the multiphase modelling
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Figure 25. Evolution of a vascularized tumour using a hybrid continuum–discrete model for
tumour cells. Discrete cells (blue) dots are released from hypoxic regions of the continuous tumour
regions (grey). Discrete cells are converted back to continuum volume fractions when their density
is sufficiently large. Vessel sprouts (yellow) and newly formed vessels releasing oxygen (dark
brown) are shown.
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approach outlined earlier, we may naturally derive thermodynamically consistent interaction
forces. Consider the total (nonlocal) energy of the system to be

E = 1

2

∑
i

∑
j

∫
Jij (x, y)φi(x)φj (y) dx dy, (80)

where Jij is an interaction potential and φi , φj are volume fractions of the i and j components,
which may be either continuum or discrete (cf equation (64)). Let us suppose that φ0, . . . , φN

represent continuum fields while φN+1, . . . , φM represent discrete fields. In particular, for the
discrete fields φj (x) = wjδ(x − xj ) where j > N , wj is a weight, δ is the delta function and
xj denotes the location of the cell. Then, we may rewrite the energy as

E = Ecc + Ecd + Edd, (81)

where Ecc represents the self-interactions among the continuum fields

Ecc = 1

2

∑
i,j�N

∫
Jij (x, y)φi(x)φj (y) dx dy, (82)

the energy Edd represents the self-interactions among the discrete cells

Edd = 1

2

∑
i,j>N

Jij (xi , xj )wiwj , (83)

while the remaining energy describes the interactions between the discrete and continuous
components

Ecd = 1

2

∑
i�N

∑
j>N

wj

∫
Jij (x, xj )φi(x) dx +

1

2

∑
j�N

∑
i<N

wi

∫
Jij (xi , y)φj (y) dy. (84)

One may now derive constitutive relations for cell velocities and fluxes using an energy variation
argument. Following an approach analogous to that used for the second liquid–liquid mixture
model in section 2.5.2, we obtain exactly the same generalized Fick’s law as in equation (59)
for the continuum fluxes and the same generalized Darcy law velocities as in equation (62) for
the continuum volume fractions, but with the total energy E given above. In particular, the
variational derivatives contain the interaction terms:

δE

δφi

= δEcc

δφi

+
δEcd

δφi

, (85)

where the former is fully continuous but the latter contains the effects of the discrete cells.
For example, assuming for simplicity that Jij (x, y) = Jij (x − y) is an even function and
Jij = Jji , we obtain

δEcc

δφi

=
∑
j�N

∫
Jij (y − x)φj (y) dy, (86)

δEcd

δφi

=
∑
j>N

wjJij (x − xj ). (87)

Assuming the kernel Jij is highly localized, a gradient approximation may be used for
equation (86) to yield an energy of the form given in equation (53).

For the discrete cells, we may take the over-damped evolution

ẋi = −ζi

δE

δxi

= −ζi

(
δEdd

δxi

+
δEcd

δxi

)
, (88)
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where ζi > 0 is a mobility and the overdot denotes the time derivative. This is similar in spirit to
the lattice-free discrete model developed recently by Ramis-Conde et al [442] described earlier
where cells interact through a discrete potential, see section 3. Here, the first term δEdd/δxi

characterizes the discrete potential while the second contains the effects of the continuum:

δEcd

δxi

= −wi

∑
j�N

∫
∇Jij (x − xi )φj (x) dx. (89)

With these choices, the total energy E is non-increasing in time in the absence of mass sources
(thermodynamic consistency). The effects of haptotaxis and chemotaxis may be added (as in
the simulation shown in figure 25) and these models may be simplified by idealizing the
interactions among the different species. For example, as mentioned above, Jij may be highly
localized and some interactions among the cell species may be neglected. The models may
also be generalized to account for elastic and viscoelastic forces in the continuum description
by considering the corresponding system energy, and by generalizing the constitutive relations
and the continuum dynamics.

5. Conclusion

In this paper we have provided a limited overview of recent results on theoretical cancer
modelling. As we have shown, there have been significant efforts to model cancer as a complex
system where there is variability and coupling among biophysical processes across a wide
range of spatial and temporal scales. While we have discussed the use of discrete models,
we have focused more on the continuum approach, and we have reviewed recent examples of
the incorporation of biologically relevant parameter values into multiscale models of tumour
growth and invasion. We have also reviewed hybrid frameworks where the tumour tissue is
modelled containing both discrete (cell-scale) and continuum (tumour-scale) elements, thus
connecting the micrometre to the centimetre tumour scale. While computational models and
simulation results still lag behind experimentation in studying cancer progression in vivo,
significant advances have been made in the nonlinear modelling of the progression of this
complex disease.

Mathematical modelling predicts that transport limitations of cell nutrients, oxygen and
growth factors may result in cell death that leads to morphological instability. This can provide
a mechanism for invasion via tumour fingering and fragmentation. These conditions induce
selection pressure for cell survivability, and may lead to additional genetic and epigenetic
responses. The results suggest that the tumour morphology and dynamics are coupled in
complex, nonlinear ways to cell phenotype and to molecular properties (e.g. genetics) as well
as to phenomena in the environment such as hypoxia. These properties and phenomena act
both as regulators of morphology and as determinants of invasion potential by controlling
cell proliferation and migration mechanisms [198, 483, 529]. The importance of this close
connection between tumour morphology and the underlying cellular/molecular scale is that
through mathematical modelling (e.g. morphology) may be used to understand the underlying
cellular physiology and predict invasive behaviour and response to treatment.

Although we did not discuss models of cancer therapy here, these results have important
implications for therapy since decreasing nutrient levels in the microenvironment, or inducing
large-scale cell death, tends to increase tumour fragmentation and invasion into the surrounding
tissue as well as drug resistance (e.g. [191, 465, 485]). Indeed, several experimental studies
have recently shown that hypoxia, for example, as induced by anti-angiogenic therapies
may result in the development of multifocal tumours [57, 151, 327, 454, 459, 462, 474]. By
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combining therapy treatments with anti-invasive drugs such as metastatic (Met) inhibitors
[48, 69, 382] or hepatocyte growth factor (HGF) antagonists [145, 377] the development of
multifocal tumours can be greatly reduced [57]. This is confirmed by increasing the cell–cell
adhesion (or decreasing cell mobility) in mathematical models (see figure 12 and [126]).

Conversely, increasing nutrient levels in the tumour microenvironment may lead to greater
morphological stability of tumours making it easier to remove surgically. This suggests [126]
that treatments that seek to normalize tumour vasculature (by selectively ‘pruning’ weak blood
vessels with targeted anti-angiogenic therapy [292]) may stabilize tumour morphology by pro-
viding increased access to nutrient. Since such treatments may also increase the accessibility
to chemotherapeutic agents [292, 484], mathematical analyses provide additional support for
the use of targeted anti-angiogenic therapy as adjuvant to chemotherapy and resection.

While great strides have been made in recent years on the development of multiscale
models of solid tumour growth, there is much more work to be done to provide a more
comprehensive understanding of cellular diversity and adaptation by describing the complex
interactions among tumour cell clones and their microenvironment [483, 529]. An important
direction for solid tumours concerns the role of stem cells and their lineages, which were not
discussed in this paper. Increasingly, it is being recognized that solid tumours are organized
in a hierarchical manner through cell lineages arising from collections of cancer stem cells.
In this picture, stem cells divide to self-renew and to produce a lineage of more differentiated
cells with (possibly) limited replication potential. Thus stem cells are hypothesized to play
critical roles in tumourigenesis, tumour progression and recurrence after treatment. See the
recent reviews by Pardal et al [405], Wicha et al [552], Dalerba et al [143], and Visvader and
Lindeman [535]. While there have been numerous mathematical models of cancer stem cells
in liquid (hematopoietic) tumours such as leukemia, there are far fewer models of stem cells
in solid tumours as evidence for the existence of stem cells in solid tumours has only been
recently established. In the past several years, mathematical models incorporating stem cells
have been developed for colorectal cancer, e.g. see van Leeuwen et al [530, 531] and Johnston
et al [296, 295], as well as for breast cancer, e.g., see Enderling et al [172] and Ashkenazi
et al [41]. Generic tumour models incorporating cancer stem cells have also been developed,
e.g. see Ganguly and Puri [219], Piotrowska [416] and Galle et al [214]. Endering et al [173]
used a cellular automaton model to investigate the effects of migration, proliferation and death
rates on cell lineages in cancer, finding that migration of stem cells is a key variable that
enhances the growth of a tumour via the spatio-temporal seeding of new colonies (termed self-
metastasis). This model was also used to study the effect of the response of tumour colonies
to radiotherapy [174].

For further references on mathematical modelling of cancer stem cells we refer the reader
to the recent review by Michor [378]. However, many questions remain regarding the effect
of spatio-temporal heterogeneity in the microenvironment and the response of the cells to
regulating chemical signals (e.g. see Jackson et al [534] for a discussion of the role of cell
signalling models in cancer). The links among molecular, cellular and tissue-scale processes
need to be further explored and integrated with experimental observations and clinical data.

Realistically, linking across such a wide range of scales requires the use of hybrid
continuum–discrete methods and holds considerable promise for the future. These methods
will allow the possibility of further expanding the current understanding of invasion
and migration [124, 170, 195, 196, 198, 307, 319, 452, 461, 483, 529, 556, 565] and instead
describe the progression as the result of a complex system of nonlinearly interacting multiscale
processes. It is with this in mind that the prediction of disease progression and treatment
response through mathematical modelling based on patient-specific tumour characteristics can
become a reality.
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