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Abstract. We introduce a novel “mathematical pathology” approach, founded on a biophysical model, to identify robust patient-
specific predictors of tumor growth useful in clinical practice to improve the accuracy of diagnosis/prognosis and intervention. In
accordance with biological observations, our model simulates the diffusion-limited in-situ tumors with a relatively short phase of
fast initial growth, followed by a prolonged slow-growth phase where tumor size is constrained primarily by the relative weight
of cell mitosis and death. The former phase may only last for a few months, so that at the time of diagnosis, we may assume that
most tumors will have entered the phase where their size is changing slowly. Based on this prediction, we hypothesize that the
volume of breast with ducts affected by in-situ tumors at the time of diagnosis will be closely approximated by a model-derived
mathematical function based on the ratio of tumor cell proliferation-to-apoptosis indices and on the extent of diffusion of
cell nutrients (diffusion penetration length), which can be measured from immunohistochemical and morphometric analysis of
patient histopathology specimens without the need for multiple-time measurements. We tested this idea in a retrospective study
of 17 patients by staining breast tumor specimens containing ductal carcinoma in situ for mitosis with Ki-67 and for apoptosis
with cleaved caspase-3 and counting cells positive for each marker. We also determined diffusion penetration by measuring the
thickness of viable rims of tumor cells within ducts. Using the ensuing ratios, we applied the model to determine a predicted
surgical volume or tumor size. We then corroborated our hypothesis by comparing the predicted size of each tumor based on
our model with the actual size of the pathological specimen after tumor excision (R2 = 0.74—0.88). In addition, for the 17
cases studied, both histological grade and mammography were not found to correlate with tumor size (R2 = 0.08—0.47). We
conclude that our mathematical pathology approach yields a high degree of accuracy in predicting the size of tumors based on
the mitotic/apoptotic index and on diffusion penetration. By obtaining these ratios at the time of initial biopsy, pathologists can
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employ our model to predict the size of the tumor and thereby inform surgeons how much tissue to remove (surgical volume).
We discuss how results from the model have implications concerning the current debate on recommendations for screening
mammography, while the model itself may contribute to better planning of breast conservation surgery.
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1. Introduction33

While tumor growth is a multifactorial dynamic34

phenomenon that evolves over time (e.g., months to35

years), clinicians often need to make diagnoses and36

decisions on treatments from one-time measurements37

of a few tumor properties, such as radiographic size38

and histologic patterns. Recent advances in biophysi-39

cal models of tumor growth provide mathematical tools40

that could be employed to better predict tumor size41

based on measurements made in histological images42

of individual patients’ tumors compared to the cur-43

rent approach, which is to use diagnostic imaging. We44

call this approach “mathematical pathology”. Math-45

ematical pathology is capable of distinguishing slow,46

long-term behaviors from fast, transient dynamics, thus47

identifying robust predictors of tumor growth that do48

not require measurements at multiple time points and49

may be readily incorporated within current clinical50

practice. In this paper, we apply a biophysical model51

of tumor growth [1] to predict tumor volumes of ductal52

carcinoma in situ with the long-term goal of employ-53

ing this novel method to inform surgical planning for54

complete tumor excision.55

Among the very few attempts to define new diag-56

nostic/prognostic criteria using biophysical models,57

time-invariant “wavelengths” of roughness of the58

tumor boundary were identified as an important pre-59

dictor of glioblastoma invasion through “fingering”60

into the brain stroma; the functional dependence of61

the fingering growth rates on tumor cell proliferation,62

apoptosis, and adhesion was calculated [2]. Further-63

more, imaging data and mathematical models were64

used to predict glioma patient survival time and inform65

decisions on drug administration [3, 4]. Using math-66

ematical models, it was also demonstrated that the67

growth of U87 glioblastoma converges to a constant68

rate, which can be directly linked to tumor prolifera-69

tion, apoptosis, and vascularization [5].70

There is a major unmet need for more accurate pre-71

surgical approaches to determine the size of a newly72

diagnosed breast cancer. Patients with DCIS (possibly73

the most prevalent precursor to invasive breast cancer74

[6–11]) currently undergo some combination of breast 75

conserving surgery, radiation therapy, and hormonal 76

therapy. Breast conserving surgery fails to remove the 77

entire tumor 38–72% of the time, requiring up to three 78

surgeries for adequate tumor excision [12–14]. In the 79

absence of adjuvant radiation and hormonal therapy, 80

the estimated rate of recurrence after surgery is up 81

to 25%. With adjuvant radiation it is approximately 82

10% [15]. Half of these recurrences already show 83

progression to invasive cancer, and at least 85% of 84

the recurrences are either in the same site or in the 85

same quadrant of the breast. The single most important 86

underlying cause that contributes to both re-excisions 87

and to recurrences has been attributed to malignant 88

cells left inside the breast [16]. Mathematical pathol- 89

ogy in combination with a breast imaging modality 90

may be used to optimize surgical treatment of DCIS 91

(in particular if accelerated partial breast irradiation is 92

used [17]) by providing more accurate, patient-specific 93

estimates of tumor volumes. 94

Mathematical analysis of the biophysics of 95

diffusion-limited tumor growth in ductal carcinoma 96

in situ of the breast leads to the hypothesis that in- 97

situ tumors with low cell mobility (e.g., non-pagetoid 98

DCIS) begin with a relatively short phase of fast growth 99

followed by a prolonged slow-growth phase. Thus 100

DCIS tumors will progress to a slow growing, nearly 101

stationary state where their final volumes depend 102

mechanistically on the balance between tumor cell pro- 103

liferation and tumor cell death. This balance depends 104

on the diffusion of nutrients through the affected breast 105

tissue and their penetration into the intraductal space. 106

As we will demonstrate in this manuscript, the final 107

volumes can be directly and quantitatively linked to 108

the breast density, represented as the density of ducts 109

within the breast tissue, and the relative rates of pro- 110

liferation and apoptosis for the individual tumor. 111

2. Materials and methods 112

Previous mathematical and computational models 113

of DCIS have focused on a single breast duct and 114
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have been successful in recapitulating certain features115

of the spatio-temporal dynamics of proliferating and116

motile tumor cells at this microscale [18–29], and have117

even, in some cases, been capable of extrapolating118

their results to predictions of macroscopic growth fea-119

tures [24] or invasive potentials as a function of grade120

[29]. Here we adopt a multiscale approach to predict121

growth and size of the volume of breast containing122

ducts with DCIS based on molecular measurements123

from histopathology of individual patient tumors. We124

thus aim not at predicting tumor volume within a sin-125

gle duct, but rather the gross volume of a breast lesion126

(herein denoted as surgical volume), which is currently127

the subject of mammographic imaging, and contains,128

among the various tissues: breast stroma, endothelium,129

fat, and ducts with DCIS within. Immunohistochem-130

istry (i.e., Ki-67 and cleaved caspase-3 staining) and131

morphometric measurements (e.g., duct radius and132

thickness of viable rim of tumor cells within) are used133

to calibrate a cell-scale population dynamics model134

[24]. This information is then upscaled to a con-135

tinuum, tissue-scale model [1] to estimate (surgical)136

tumor volumes. The present manuscript builds upon137

our preliminary work [30] with more patient data 138

points, improved methods, and in-depth analysis of 139

the results. This multiscale approach of mathematical 140

pathology is illustrated in Fig. 1. We thus aim at pro- 141

viding a tool for more accurate assessment of surgical 142

volume, which would improve the success of complete 143

excision of breast tumors. 144

Table 1 lists the definitions of all the model param- 145

eters and variables used in this paper. The parameter 146

input values calculated from raw pathologic measure- 147

ments are summarized in Table 2 and described in the 148

following. 149

2.1. A mathematical formula for predicting the 150

size of in-situ tumors 151

We model the surgical volume as a porous medium 152

(of roughly ellipsoidal shape) with tumor cells grow- 153

ing through it [1]. In this preliminary version of the 154

model we are not interested in the detailed geometry 155

of the duct system and other tissues within this volume 156

of breast, but rather in accurately assessing the extent 157

of the volume required for adequate surgical excision. 158

Fig. 1. Patient-specific model prediction of surgical volume from pathology data. The cell-scale measurements (e.g., proliferation and apoptotic
indices) are averaged across each tumor to calibrate the tissue-scale model, which then predicts surgical volume [5]. The key formula (Eq. 1) of
the model depends mechanistically on the pathology-measurable patient-specific parameters L and A, i.e., nutrient diffusion-penetration length
in the tumor and ratio of tumor cell death to proliferation. The left portion of the figure is adapted from [30, Fig. 10.1], reprinted with permission
from Cambridge University Press.
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Table 1

Biophysical model parameters

Parameter Biophysical meaning

A Ratio of cell apoptosis to proliferation rates
(Eqs. 1, 2a)

AI, PI Apoptotic, proliferative indices (Eq. 3)
D, λ Nutrient diffusion coefficient and uptake rate by

tumor cells (Eq. 2b, footnote 1)
f Tumor volume fraction (Eq. 2b, footnote 1)
L Nutrient diffusion penetration length across

tumor surgical volume (Eqs. 1, 2b)
R Geometric-mean tumor surgical radius (Eq. 1)
Rduct, T Duct radius, viable-rim thickness (Eq. 4)
λA, λM Tumor cell apoptosis, mitosis rates (Eqs. 2a, 3)
σ, σH Nutrient concentration, concentration at the

peri-necrotic boundary (Eq. 4, footnote 1)
τA, τP Cell apoptosis, proliferation times (Eq. 3)

Therefore we average local phenotypic and morpho-159

metric properties. In the Discussion, we present ideas160

for extending this analysis to accurate prediction of161

tumor shape (e.g., the ratios of the three dimensions as162

measured from mammography).163

In this model, cell proliferation and death, together164

with nutrient diffusion and uptake by the cells,165

uniquely determine the rate of growth and the tumor166

size. Analysis [1] of the model reveals that the geomet- 167

ric mean of the tumor dimensions (i.e., the cube-root 168

of the surgical volume or, as expressed in our model, 169

the diameter 2R) reaches a (nearly) stationary value, 170

which is set by an overall balance of mass gain from 171

proliferation in well oxygenated areas and mass loss 172

from cell death in hypoxic or nutrient-depleted areas. 173

Our simulations using a range of physiological input 174

values (as described below) show that DCIS tumors 175

reach nearly stationary sizes following a short period 176

of fast growth which may last as little as about two 177

months [31, 32]. Given such short growth time com- 178

pared to yearly screenings by mammogram, we may 179

expect most DCIS tumors to be near their stationary 180

size at the time of diagnosis. The value of R depends 181

upon two key parameters: A, which is the ratio of 182

cell-death to cell-proliferation rate constants averaged 183

over the multitude of ducts within the surgical volume, 184

and L, the nutrient (e.g., oxygen) diffusion penetra- 185

tion length within the involved breast tissue, via the 186

following mathematical pathology formula [1]: 187

A = 3 · L

R
·
(

1

tanh(R/L)
− L

R

)
. (1) 188

Table 2

Summary of pathological/mammographic features with model parameter values and predictions for index series∗

Case ID Subtype Grade∗∗∗ A L (�m) Diameter (cm)

Modela Imageb Pathc

8 Cribriform 2 2.00E-02 374.00 11.14 1.56 0.93
13 Solid 3 4.11E-02 196.84 2.83 2.22 3.27
14 Cribriform 2 3.01E-03 350.75 69.96 1.43 1.15
15 Cribriform 1 1.15E-01 301.63 1.51 1.14 0.96
17 Mixed∗∗ 2 2.17E-01 222.33 0.57 0.93 1.13
18.1 Cribriform 1 2.63E-01 237.50 0.49 0.79 1.06
18.2 Mixed∗∗ 3 4.66E-02 228.03 2.89 0.80 3.27
19 Mixed∗∗ 3 2.75E-02 160.99 3.48 6.11 2.27
21 Cribriform 2 5.79E-02 230.88 2.35 1.98 2.05
22 Cribriform 3 3.92E-02 198.16 3.00 4.64 2.08
23 Solid 3 1.06E-01 275.12 1.51 1.64 1.16
28 Solid 3 3.90E-02 176.73 2.69 1.13 2.93
39 Mixed∗∗ 1.5 3.83E-02 158.30 2.45 1.29 1.5
40 Mixed∗∗ 1.5 5.31E-02 457.05 5.07 5.01 4.58
42 Cribriform 1 4.90E-02 303.53 3.65 5.00 3.44
48 Cribriform 1 2.85E-02 278.18 5.80 2.82 2.38
51 Solid 3 9.08E-02 218.23 1.40 3.02 1.39

∗ Volume fraction f = 24% (average of all 17 cases) was used
∗∗ Mixed Subtype denotes mixed solid and cribriform subtypes
∗∗∗ Grade of 1.5 is a numerical representation of a low/intermediate grade assigned by a pathologist
a2R from Eq. (1)
bBased on geometric mean of three dimensions measured from mammographic images
cBased on geometric mean of three dimensions measured from pathology material.
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Thus we are assuming that increased uptake due to189

the presence of the tumor cells in the DCIS-affected190

ducts leads to conditions of oxygen and nutrient deple-191

tion within the tumor surgical volume, and eventually192

to diffusion-limited growth of this volume. Note that193

this hypothesis only applies to non-pagetoid DCIS,194

where cell migration along the basement membrane195

can be neglected.196

It would be problematic to input cell-scale (i.e.,197

<200 �m) patient-specific histological and immuno-198

histochemical molecular measurements directly to199

whole-tumor models (e.g., at the centimeter scale) of200

surgical volume. To obtain the patient-specific values201

of A and L, and thus predict tumor surgical volumes202

4πR3/3, we introduce a multiscale approach, where203

immunohistochemistry and morphometric measure-204

ments of the individual ducts from patient resected205

tissue (see below) are used to directly calibrate key206

parameters in a cell-scale population model. These207

parameters are subsequently upscaled through bio-208

physically founded “static” mathematical relations to209

accurately inform the parameters A and L of the210

tissue-scale continuum model Eq. (1). This mathe-211

matical pathology procedure is described in detail in212

the following. The definitions of the parameters are213

[1, 30]:214

A = λA/λM; L = f−1/2 · (D/λ)1/2; (2)215

where the maximum mass growth rate constant by216

mitosis in ducts is λM (i.e., corresponding to nutrient217

conditions of σ = 1), and the analogous death (e.g.,218

apoptosis) rate constant is λA (all calculated by their219

average values throughout the patient tumor surgical220

volume). The term σ represents the local nutrient (e.g.,221

oxygen) concentration normalized to the concentration222

in the uninvolved breast tissue away from the DCIS-223

affected regions (i.e., σ < 1 inside the breast tissue224

involved by DCIS and σ = 1 outside the region of225

tumor involvement). The (average) nutrient diffusion226

coefficient in ducts is D, f is the fraction of surgical227

volume occupied by viable tumor cells and λ is the228

nutrient uptake rate by cells in ducts. Thus the quan-229

tity L is an average property of breast tissues within230

the surgical volume that characterize how far oxygen231

and nutrients may propagate by diffusion under uptake232

by the cells (including the DCIS cells) [1] (the quan-233

tity (D/λ)1/2 is the corresponding average intraductal234

diffusion penetration length, reflecting the fact that the235

cells are placed within a heterogeneous distribution of236

oxygen and nutrients diffusing from the vessels outside 237

the duct walls into the duct interior)1. 238

2.2. Patient-specific calibration of Eqs. (1) and 239

(2) from cell-scale measurements 240

By volume averaging, we set the rates of mass 241

growth (due to DCIS cell mitosis) and decrease (death) 242

within the surgical volume by averaging over corre- 243

sponding proliferation rates in a cell population model 244

[24, 30, 33]: 245

λM · 〈σ〉 = PI/τp; and λA = AI/τA; (3) 246

and thus determine λM and λA. Here, PI and AI are the 247

proliferative and apoptotic indices (fractions of total 248

number of cells) respectively. We measured PI using 249

Ki-67 to identify cycling (non-G0) cells and AI using 250

cleaved caspase-3 to measure the fraction of cells in 251

the apoptotic state (see below). Values are measured 252

for individual ducts by IHC and averaged over the 253

ducts of each tumor case (Table S1). In the population 254

model2, τP is the (constant) duration of the cell cycle; 255

cell death processes (e.g., apoptosis) have time dura- 256

tion τA. We set τP = 18 hours to complete a cell cycle 257

and proliferate [37]. We set τA = 6.6 hours [24, 33] 258

by applying the population model to (benign) breast 259

epithelium [38] and correcting for the early portion of 260

apoptosis that cannot be detected by TUNEL assay but 261

is detected by cleaved caspase-3 [39]; this estimate is 262

consistent with the experimental literature (e.g., [40, 263

41]), correcting previous underestimation of AI [30]. 264

The diffusion penetration length L is calculated from 265

Eq. (2b), where we measure f as the fraction of area 266

1 Eqs. (1) and (2) can be derived [1] by solving corresponding
conservation equations within the surgical volume: ∇ · u = λM ·
σ − λA, for the surgical volume growth rate, and D · ∇2σ − f · λ ·
σ = 0, for nutrient transport within this volume, where u is the local
cell velocity due to proliferation-induced volume expansion, and
the latter describes diffusion and local rate of uptake of nutrients by
(tumor) cells.

2 We apply herein a reduced version of a general agent-based
cell model [24, 30, 33, 34] (preprint of [24] at: http://www.
MathCancer.org/Publications.php#macklin11 jtb) that improves
over a previous cellular automaton approach [35, 36]. Accordingly,
we only determine averaged tumor population dynamics of mitosis
and death, where these phenotypic states are governed by stochas-
tic processes which depend upon the cell’s internal machinery and
its sampling of the heterogeneous microenvironment (nutrient con-
centrations σ). The population dynamics can be averaged across the
viable rim within a duct to obtain an equation governing the total
number N of viable cells therein: dN/dt = (PI/τP − AI/τA) · N,
and then derive Eq. (3).

http://www.MathCancer.org/Publications.php#macklin11_jtb
http://www.MathCancer.org/Publications.php#macklin11_jtb
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occupied by tumor (duct space occupied by tumor)267

from the histopathology images as described below.268

The overall population dynamics is substrate-269

dependent. We estimate the mean nutrient level across270

the viable rim of tumor cells (within an idealized cylin-271

drical duct of radius Rduct and viable-rim thickness272

T) in Eq. (3a) by solving the diffusion equation (see273

footnote 1) to obtain:274

〈σ〉 = σH

I0

(
Rduct−T

L0

) · 2L0

2RductT − T 2275

·
[
Rduct · I1

(
Rduct

L0

)
− (Rduct − T )276

·I1

(
Rduct − T

L0

)]
, (4)277

where σH is the threshold concentration value at a278

distance T from the duct wall (viable-rim thickness),279

below which cells become necrotic due to lack of oxy-280

gen and nutrients (we set σH = 0.2 [24, 30] based281

upon published models for breast cancer [37, 42]),282

and In is the n-th order modified Bessel function of283

the first kind. We use the average duct radius 〈Rduct〉284

and viable-rim thickness 〈T 〉 values from duct mor-285

phometric measurements (see below) in place of Rduct286

and T in Eq. (4). We set [30] the intraductal diffusion287

length L0 = (D/λ)1/2 by averaging the measurements288

of T in several ducts in resected tissue for each patient:289

L0 = < T > (Table S2). Note that this measurement290

requires necrosis to be present in the histological sec-291

tions of DCIS.292

2.3. Selection of cases and immunohistochemistry293

Our index series of 17 cases has DCIS tumors rang-294

ing in maximum dimension from 1–9.8 cm with a295

median value of 4.0 cm. Among these 17 cases, 12 of296

them, also used in our preliminary study [30], were col-297

lected and processed in 2008 (Cases 8–28), while the298

other five were obtained in 2009 (Cases 39–51). Our299

samples include four solid-type (23.5%), six cribri-300

form (35.3%), and seven solid / cribriform mixed-type301

(41.2%) growth patterns. Grade distribution for our302

series was as follows: four cases (23.5%) were low,303

two (11.8%) were low/intermediate (represented by a304

numerical grade of 1.5 in Table 2), four (23.5%) were305

intermediate, and seven (41.2%) were high grade. A306

minimum of one and maximum of three formalin fixed307

paraffin embedded (FFPE) blocks of tumor tissue were308

selected from each case for immunohistochemistry 309

measurements. Blocks were selected that contained the 310

highest density of tumor cells. Each block had a min- 311

imum of 1 cm2 surface area of breast tissue for exam- 312

ination. Five (5) micron sections were cut for staining 313

either with Hematoxylin and Eosin (H&E) to visualize 314

the tumor, or with immunohistochemistry for a specific 315

antibody to identify and quantify a particular antigen 316

and its subcellular location at a minimum resolution of 317

approximately 2 �m (spatial resolution equivalent to 318

quarter-width of nucleus). We measured the prolifera- 319

tive index (PI) as the fraction of cells that were Ki-67 320

positive. Ki-67 is a nuclear antigen that is expressed 321

throughout cell cycle, except during portions of the G1 322

phase, and is the gold standard for measuring PI (e.g., 323

[43]). Ki-67 was stained with MIB-1 (clone of antibod- 324

ies from Dako). Cleaved caspase-3, an executioner pro- 325

tein that has been documented as an apoptotic marker 326

throughout most of the apoptotic cycle (e.g., [44]), was 327

used to quantify the apoptotic index AI, i.e., the fraction 328

of cells in the apoptotic state. Cleaved caspase-3 was 329

stained using antibody purchased from Biocare Medi- 330

cal. For both stains, five micron sections were hydrated 331

to water and antigen retrieved in citrate buffer pH6. The 332

sections were blocked with 3% hydrogen peroxide for 333

5 minutes, whole goat serum for 5 minutes, incubated 334

with antibody to either Ki-67 or cleaved caspase-3 335

for 30 minutes followed by goat anti-rabbit IgG-horse 336

radish peroxidase (HRP) for 15 minutes, and then 337

localized with diaminobenzidine (DAB) for 5 minutes. 338

Slides were counterstained with Mayer’s hematoxylin 339

for 5 minutes, dehydrated and cover-slipped. 340

Quantification for AI and PI on immunohisto- 341

chemistry stained sections was performed as follows. 342

Magnified images (100× and 200×) of multiple areas 343

of DCIS were analyzed using computational image 344

processing routines. The image samples of the 2008 345

batch were preprocessed by a custom-built Visual 346

Basic color-thresholding plug-in for Image Pro Plus 347

4.5 to quantify the total number of tumor cells (denom- 348

inator to AI and PI) and the number of Ki-67 positive 349

nuclei (numerator for PI) in a selected duct. The 350

image samples of the 2009 batch were preprocessed 351

and counted by a MATLAB program developed by 352

our group, using three-cluster k-means to distinguish 353

the positive and the negative nuclei and the image 354

background3 [45]. Images that were too faint for 355

3 Preprint to be made available at http://www.MathCancer.org/
Publications.php#book chapters

http://www.MathCancer.org/Publications.php#book_chapters
http://www.MathCancer.org/Publications.php#book_chapters
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the computational routines to distinguish the stained356

cells from the background were counted manually. We357

counted a minimum of 1891 cells per tumor specimen358

(Table S1). We expect the k-means algorithm, which359

can achieve better separation of the chromogen stain360

color space versus the background stain color space on361

IHC because it is using the individual spectral output362

of the images, to be more consistent than grayscale-363

thresholding techniques currently in widespread use,364

which do not use spectral information but rely on rela-365

tive intensity of colors. Based on 21 randomly selected366

duct images, the individual results for PI and AI gen-367

erated by the k-means algorithm differed from the368

manual cell counts by 23.2% on average. The result-369

ing difference in the parameter A values for the same370

images was only 6.4%. We attributed the differences371

in cell counts for AI and PI to systematic errors due to372

image quality that partially canceled each other when A373

was calculated form their ratio. Thus we conclude that374

the calculation of A is quite robust against systematic375

counting errors. We also note that the total number of376

cells is approximately the same in both the Ki-67 and377

the cleaved caspase-3 sections; thus AI/PI reduces to378

the ratio of positive cleaved caspase-3 cells to positive379

Ki-67 cells. The automated and manual counts of the380

positive cells are more robust due to the darker color381

of the positive stain when grayscale thresholding is382

used, and to the spectral separation of the positive stain383

when the k-means algorithm is used. In addition, the384

smaller number of cells to count improves the manual385

accuracy.386

The IHC counts for each case are given in Table S1 in387

the Supplementary Data. We estimated the variations388

of A (Eq. 3) using Taylor expansion of the standard389

errors of the mean (SEM) of the PI and AI measure-390

ments performed on individual duct cross sections for391

each tumor [46, 47], thus accounting for the combined392

effects of intra- tumor heterogeneity (e.g., due to phe-393

notypic and microenvironmental differences), sample394

sizes and measurement errors.395

There was significant variation between cases.396

Among the 17 cases, one intermediate grade cribri-397

form type case (Case 21) did not display any positive398

staining for cleaved caspase-3. In addition, one high-399

grade case (Case 13) displayed a high background of400

non-specific cleaved caspase-3 staining suggesting that401

the staining procedure failed. Given the clustering of402

values for AI and PI that was observed as a function403

of grade (see discussion that follows) the values for404

AI for these two cases was substituted with the mean405

value for AI for the remaining intermediate and high 406

grade tumors, respectively. 407

2.4. Tumor-size and morphometric measurements 408

Tumor size was estimated by reviewing the pathol- 409

ogy gross description and individual tumor sections. 410

The dimensions for small DCIS present on a single 411

slide (<1 cm in greatest extent) were estimated by mea- 412

suring the span on a single slide using a measuring tool 413

(Olympus BX 41 with ocular micrometer). For larger 414

DCIS, the width was estimated by multiplying the 415

number of slices containing DCIS by the average width 416

of a slice. The standard procedure for DCIS surgical 417

specimens is serially slicing the gross specimen from 418

medial to lateral. The thickness of individual slices was 419

estimated by dividing the width of the specimen by the 420

total number of serial slices. Width in the medial to 421

lateral plane was estimated using the number of slices 422

involved multiplied by the average width of a slice. 423

Adjacent sections that represented DCIS in its entirety 424

in a cross section of either the anterior-posterior and 425

superior-inferior planes were laid out and the extent of 426

the DCIS estimated by measuring the distance between 427

the furthest points to which it extended across the glass 428

slides. This approach is similar to that used in the lit- 429

erature to estimate pathologic size of DCIS (e.g., [48]) 430

and is considered the most accurate means of measur- 431

ing tumor size [49]. The 17 cases used in this paper 432

did not include any multicentric DCIS, which is con- 433

sidered to be independent tumors present in more than 434

one quadrant [50]. 435

Typically DCIS is characterized by the largest 436

measurement along any single dimension, called the 437

“greatest dimension” of the tumor. We used instead 438

the “geometric mean” diameter (the cube-root of the 439

product of the three measured dimensions of the 440

tumor, which is a better indicator of the volume), and 441

compared this to the diameter predicted by Eq. (1). 442

Although the greatest dimension for our series of duc- 443

tal carcinoma cases was as high as 9.8 cm, none of the 444

tumors had a geometric mean larger than 4.58 cm. The 445

full list of measured dimensions is reported in Table 446

S3. 447

Mammographic measurements of tumor dimensions 448

were performed by reviewing the images and deter- 449

mining the maximum distance between suspicious 450

calcifications belonging to the target lesion in the sagit- 451

tal (anterior-posterior), transverse (medial-lateral), and 452
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coronal (superior-inferior) planes. As for the pathology453

specimens, the geometric mean of the mammographic454

dimensions was calculated, while the full list of the455

measurements is reported in Table S3.456

We measured f (the volume fraction of the viable457

tumor) by taking multiple H&E images of DCIS at458

40× and calculating the fraction of area occupied by459

viable DCIS in the representative blocks selected for460

study. If adipose tissue was present in the slides, the461

corresponding area was not included in the denomina-462

tor of f for consistency. Our basis for this approach is463

that the vasculature is predominantly associated with464

the stroma of the breast and not in the adipose tissue.465

We used this 2-D area fraction as an estimate of the466

3-D volume fraction, which is most accurate when the467

ducts seen in the tissue block are predominantly cross468

sections of tubular structures. Because of difficulties469

in estimating f from individual sections that may have470

included variable amounts of surrounding stroma, we471

averaged f across all of the index series based on the472

assumption that duct density is relatively constant in473

the affected population.474

Duct radius and viable-rim thickness were mea-475

sured individually for each patient using a calibrated476

scale embedded in the pathology images (to take into477

account the effect of local cellular uptake on the oxygen478

concentration). Corresponding diffusion penetration479

lengths ranged in value from 77–224 �m, which com-480

pare well with typical published values of 100 �m481

under ideal conditions (e.g., [37]). The larger values482

corresponded to low grade cribriform DCIS where the483

local density of cells is less than it is for higher grade484

and more dense (solid) DCIS. This result corresponds485

to our expectations based on the relatively lower oxy-486

gen uptake by low-grade cribriform type DCIS (per487

unit tissue volume) due to the lower density of tumor488

cells. The lower density can be attributed to the type of489

DCIS, as cribriform type has internalized acinar-like490

spaces, and the lower PI values observed for low grade491

DCIS tumors.492

These measurements for each case are given in493

Table S2 in the Supplementary Data. Because Eq.494

(4) assumes the presence of a peri-necrotic boundary,495

the model calibration described above is best suited496

to solid, cribriform and mixed solid-cribriform type497

DCIS, where a viable rim thickness can be readily iden-498

tified, in contrast to micropapillary type DCIS, which499

is characterized by ducts with hollow centers. To be500

more consistent with the assumptions of Eq. (4), and501

thus to obtain more accurate parameter calibration, we502

excluded duct cross sections with non-necrotic hollow 503

centers in the 2009 batch, whereas all samples were 504

previously considered [30]. 505

3. Results 506

Our simulation studies [1] of the growth of the DCIS 507

surgical volumes over time (not shown) using input 508

parameters calculated as in Methods indicate that more 509

than 80% DCIS tumors, assuming that they are not 510

palpable and therefore would not be self-diagnosed, 511

should have reached at least 95% of their (quasi-)steady 512

state surgical volumes by the time they were detected 513

by yearly mammography screening, also assuming 514

slow-to-non-varying tumor cell phenotypic properties 515

during the course of their growth. This model predic- 516

tion is consistent with published findings that nearly 517

80% of in-situ tumors identified by mammographic 518

screening are either static with respect to size, or have 519

very slow growth rates consistent with an approach to 520

steady state [51, 52]. Thus we used Eq. (1) to compute 521

the steady-state geometric-mean diameter of the sur- 522

gical tumor volume from the parameters A = λA/λM 523

and L according to the protocol described in Meth- 524

ods (Fig. 1) for comparison with tumors measurements 525

from pathologic specimen studies and from the mam- 526

mographic images. Note that for “large” tumors where 527

R exceeds the value of L, Eq. (1) reduces to a simple 528

expression for the geometric mean diameter: 529

2R = 6 · L/A. (5) 530

Thus, for large tumors the surgical volume is directly 531

proportional to the ratio of L to A, where larger L indi- 532

cates adequate access to nutrients by diffusion deeper 533

into the duct, and A represents an index of cell death 534

relative to cell proliferation (see Methods). Examining 535

our measured values for L and for A (see Table 2), we 536

can see that we are effectively in the range where this 537

simplification applies. These values for L represent the 538

quantified effect that diffusion processes within tumor 539

tissue have on the size each tumor can achieve. 540

As shown in Fig. 2 the simplified formula (Eq. 5) 541

allows us to compare in physical units (i.e., centime- 542

ter) the tumor sizes (the “Path” column from Table 2) 543

measured from pathologic specimens and plot these 544

against L/A values calculated from Ki-67 prolifera- 545

tive index, cleaved caspase-3 death index and viable 546

rim thickness as per Eq. (2) (the error estimation is 547
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described in caption). Tumor sizes correlated with the548

parameter L/A (linear correlation coefficient R2 = 0.74549

by removing two outlier cases 8 and 14), as predicted550

by the simplified version (Eq. 5) of our model. Size551

increases proportional to the ratio 1/A of cell mito-552

sis over death and to the nutrient diffusion penetration553

length L, i.e., availability of nutrients limits tumor554

growth. This correlation demonstrates the predictive555

value of the biophysical model of tumor growth. A pre-556

liminary version of this figure was previously reported557

[30, Fig. 10.8], where the full formula (Eq. 1) was558

plotted against the 2008-batch of data only in a math-559

ematically non-dimensionalized units.560

Three cases (8, 14, 48 in Fig. 2) deviate signifi-561

cantly from the predictions of the model curve Eq.562

(5). In all three cases the estimated mean geometric563

diameter is greater than 5.01 cm. In contrast, cases 8564

and 14 are small tumors (geometric-mean diameter565

∼1 cm); closer examinations of the tissue samples of566

these two cases show relatively high proliferation and567

thick viable rims, suggesting substantial oxygenation568

within the tumors. Hence, they are likely still in the569

rapid-growth stage, where Eq. (1) (and therefore Eq.570

(5)) does not apply (see Methods). In fact, the com-571

puted final diameter for case 14 is nearly 70 cm, which 572

is physically impossible. For case 8 the computed geo- 573

metric mean diameter is approximately 11 cm, which 574

would also be a very large tumor; for case 48 the 575

geometric mean diameter is 5.8 cm. Simulations of 576

the time-dependent model [1] indicate that the tumor 577

should reach nearly 90–95% of their final size stage by 578

approximately 2 months for the values of A measured 579

in the 17 cases, thus predicting roughly a 2/12 = 17% 580

probability of a tumor being diagnosed still in this 581

stage using yearly mammogram screenings. This is 582

consistent with the observation that these three cases 583

represent 3/17 or approximately 18% of cases exam- 584

ined here, thus corroborating the hypothesis that these 585

three outliers should be indeed still in the early, more 586

rapid growth phase. In addition, for these three cases 587

the fewest tissue samples among the entire 17 cases 588

were analyzed by IHC, which, together with the gener- 589

ally low frequency of apoptosis, potentially introduced 590

a higher degree of significant error in the measurement 591

of A. 592

Mammographic measurements demonstrate 593

roughly equal numbers of overestimates versus 594

underestimates of the tumor size, and are not a reliable 595

Fig. 2. Tumor size correlates with the death-to-proliferation ratio parameter. Tumor geometric-mean diameters 2R (dashed) vs. A/L predicted
by Eq. (5) compared to the corresponding pathology measurements from the 17 excised tumors (symbols, with de-identified case numbers).
Standard errors of the mean (SEMs) are reported [46, 47] (see Methods for details) (see also Table 2). SEMs for L/A were calculated as the
summation of the first order in Taylor expansion from the variability of the AI and PI stains and the viable-rim thickness measurements in each
tumor. For an explanation of cases 8, 14 and 48 see text of Results section. Previously [30, Fig. 10.8], we used the 2008 batch of patient tumor
volume data alone (cases 8–28) to assess the feasibility and accuracy of a prototype parameter calibration protocol.
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Fig. 3. Mammography, grade are poor predictors of tumor size.
Comparison between the geometric-mean tumor dimension from
mammograms and from pathology analysis of 17 excised DCIS
tumors (de-identified case numbers are reported). Mammography
overestimates tumor size in ten cases and underestimates the other
seven. Correlations of both the mammography and the nuclear grade
(in legend) with the tumor sizes are poor at best.

patient-specific predictor (R2 = 0.47), as shown in596

Fig. 3. For example, specimen 19 has a geometric597

mean diameter of approximately 6 cm by mammog-598

raphy but only approximately 2 cm by pathological599

examination of the surgical specimen after excision.600

In contrast, specimen 18 L was less than 1 cm by601

mammography but was >3 cm by pathologic analysis602

after excision (both are high grade tumors). See also603

Tables 2 and S3. Note that in both cases the size604

correlation between the pathologic examination and605

the model prediction are very close.606

Histological grades also showed weak to no correla-607

tion with tumor sizes (Fig. 3; R2 = 0.08 or the spearman608

rank correlation coefficient ρ = 0.16). Consistent with609

previous work [53], the apoptotic and proliferative610

indices tracked similarly with grade of tumor (Fig. 4a;611

ρ = 0.82 for PI and ρ = 0.77 for AI). Note that these612

two indices show very similar trend when graphing613

index versus grade. Thus their ratio would be only614

weakly dependent on grade (ρ = −0.26), corroborat-615

ing the finding that net proliferation (i.e., ratio of PI to616

AI) and thus tumor size should have a weaker correla-617

tion with grade.618

Finally, viable-rim thickness of tumor in ducts619

and thus the nutrient diffusion penetration length L620

decrease as a function of histological grade (Fig. 4b):621

more proliferative, high-grade tumors result in tightly622

packed patterns and thus are likely to hamper oxy-623

(a)

(b)

Fig. 4. Correlations of IHC and morphometric measurements with
nuclear grade (with spearman rank correlation coefficients). (a) Aver-
age apoptotic (AI) and proliferative (PI) indices for each tumor
as increasing functions of (modified Black’s) nuclear grade (one
overstained-AI tumor and one zero-AI tumor were excluded). (b)
Nutrient diffusion penetration length L from average measured
viable-rim thickness T in each tumor’s ducts is a decreasing function
of nuclear grade.

gen and nutrient diffusion. Diffusion limits tumor size. 624

Lack of oxygen in these high-grade tumors would drive 625

hypoxia-inducible factors and cell migration, leading 626

to penetration of the ductal wall and infiltration of the 627

tumor in the breast stroma, as has been previously 628

reported [21, 22]. 629

4. Discussion 630

The death-to-mitosis ratio A is a strong predictor of 631

tumor volume, thus suggesting that cell death immuno- 632

histochemical measurements should be performed on 633

biopsied tissue (in addition to cell proliferation) to 634

aid in the surgical planning. Studies seeking correla- 635

tions between pathology based measurements of actual 636

tumor volume and histological grade or tumor dimen- 637
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sions predicted from mammography indicate that these638

are unreliable sources for estimates of tumor size [54,639

55]. Excluding the outlier cases 8 and 14, then the640

pathology based tumor sizes correlate with L/A (lin-641

ear correlation coefficient R2 = 0.74) as predicted by642

Eq. (5). In contrast the pathology based tumor size does643

not correlate with grade for the same cases (R2 = 0.08).644

Considering that grade is a subjective assessment of645

nuclear size and nuclear pleomorphism and thus not a646

precise quantification, we also calculate the spearman647

rank correlation coefficient ρ = 0.16 between tumor648

size and grade, still revealing a very weak correla-649

tion. Examining the data further, we find that grade650

does correlate with PI (ρ = 0.82) and AI (ρ = 0.77). The651

correlation is less pronounced with L (ρ = −0.62) and652

much weaker for A (ρ = −0.26). Thus, while grade is653

informative with regard to PI it is not informative with654

respect to expected tumor size, while the ratio of L/A655

is informative. If we only consider the cases where656

the mean geometric diameter is less than or equal to657

5.01 cm, then the correlation of L/A with the geomet-658

ric mean diameter of the pathology-based size is even659

better (R2 = 0.88). In comparison, the correlation of the660

geometric mean diameter of the pathology-based size661

with the geometric mean diameter based on mammog-662

raphy measurements is poor (R2 = 0.47 excluding the663

two outlier cases). It is the same when case 48 is also664

excluded.665

Our findings demonstrate that morphology and other666

tumor characteristics (e.g., margin width, mammo-667

graphic size, extent of involvement of the cores by668

DCIS, in addition to solid type, high grade, presence of669

necrosis, and presence of calcifications), which have670

been correlated with compromised surgical margins671

[14, 56], are histological surrogates for mechanis-672

tic parameters. Using the novel, biophysics-based673

approach applied here, we can more accurately predict674

surgical volumes in the form of explicit mathemat-675

ical functions. We can conclude that the ratio of676

parameter L, the characteristic diffusion length from677

morphometric studies, to A, the death-to-mitosis ratio678

as determined by cleaved caspase-3 and Ki-67 stain-679

ing, is a strong predictor of steady state tumor volume.680

In comparison, mammographic estimates have a poor681

correlation.682

Our results also indicate that while high grade corre-683

lates with PI, it has poor correlation with A, L and thus684

with tumor size. We note that we are able to obtain685

more accurate counts of both AI and PI from higher686

grade tumors, resulting in more accurate prediction of687

their steady-state tumor diameters (Fig. 2 and Table 2). 688

High-grade tumors are more likely to be associated 689

with necrosis, which is required so that we can deter- 690

mine L from the viable rim thickness. Thus, for high 691

grade tumors diagnosed on core biopsy, measurements 692

of A and L could not only be feasible, but they might 693

be used to predict tumor volume with better accuracy 694

than current methods.4 695

We can interpret these results as a biophysical expla- 696

nation of how diffusion processes within the tumor 697

tissue limit the maximum size that the tumor could 698

achieve in an otherwise ideal environment with excess 699

nutrients. Highly proliferative tumors with low apop- 700

totic rates and with good penetration of nutrients will 701

be larger; however, as the diffusion penetration length 702

gets smaller then access to nutrients to support growth 703

is negatively impacted and the expected tumor size 704

decreases. 705

Despite the small number of tumor ducts used in 706

this study to calculate the input parameters A and L 707

to the biophysical model for each patient, the model 708

predicted diameter and the pathology determined 709

geometric mean diameter strongly correlate, demon- 710

strating the potential of the mathematical pathology 711

approach for translational application. In contrast, the 712

image predicted geometric mean diameter has a poor 713

correlation with the actual tumor geometric mean 714

diameter determined from pathology. We envision 715

future work with the model to validate a role in predict- 716

ing surgical volumes required for adequate excision 717

of DCIS, and for predicting whether there is a high 718

likelihood of residual disease after excision with close 719

margin based on the expected tumor volume versus the 720

excised surgical volume. 721

One aspect of surgical planning that has not been 722

addressed here is how shape impacts the individ- 723

4 High grade when combined with presence of necrosis has been
associated with an increased risk of invasion [57]. We note that the
measured value for L tends to cluster at a range of lower values
for the high-grade tumors (see Fig 3c and Table 2). High-grade
tumors are more proliferative and result in ducts with more tightly
packed cells. This higher cell density will hamper oxygen and nutri-
ent diffusion to the inner part of the duct. When these tumors
involve ducts with a radius larger than L, proliferation is reduced
and ischemic necrosis occurs. Lack of oxygen has been postulated
to drive hypoxia-inducible factors leading to penetration of the duc-
tal wall and infiltration of the tumor in the breast stroma [21, 22].
This may explain the correlation of grade and necrosis with inva-
sion. It does not explain the correlation of mammographic size with
invasion, although this might be due to the fact that more extensive
calcifications across the breadth of the tumor are an indicator of
ongoing hypoxia and necrosis.
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ual dimensions once the surgical volume has been724

estimated. As can be seen from the individual mam-725

mographic measurements (see Table S3) these x-ray726

based images that detect calcifications in patterns727

associated with the Presence of DCIS are not very728

accurate in determining the actual size of a tumor,729

nor are they very accurate in predicting the relative730

axes of the tumors. It is likely that different size731

distributions of ducts are present along the three dimen-732

sions of the tumor, thus leading to different extents733

of necrosis along the different dimensions and there-734

fore inaccurate relative dimensions. For example tumor735

in smaller ducts along one dimension may have suf-736

ficient oxygen to preclude ischemic necrosis. This737

dimension might be underestimated, while tumor in738

larger ducts growing in another dimension may be739

adequately measured because of necrosis. Calcifica-740

tions within lesions such as columnar cell change741

confound the measurements.5 Other imaging modal-742

ities such as magnetic resonance imaging (MRI) or743

possibly ultrasound may be able to provide more accu-744

rate information regarding the relative proportions745

of the dimensions of a tumor. A model assisted 3-746

dimensional image combining MRI and a predicted747

volume from the model may provide better technical748

assistance to the surgeon. Estimating the proximity of749

margins and the probability of tumor left in the patient750

in a 3-dimensional image may become increasingly751

important as the quantity of radiation is reduced in the752

adjuvant setting.753

Breast architecture and the arborization of ducts,754

unique to each individual although on a common755

body plan, may also influence the actual geometry756

and thereby local extension of intraductal tumor757

cells. Imaging modalites other than mammography,758

such as MRI, ultrasound, and optical approaches, for759

the breast are rapidly coming generally available at760

affordable cost. Such newer imaging provides detailed761

information about duct architecture and could then be762

used as a map to input the simulated cancer growth763

derived from our model, thereby greatly enhancing764

the predictive power of the tumor size. Statistical765

approaches have also described a number of genes766

expressed in more aggressive DCIS [58] which could767

5 Mammography is not a reliable indicate because it is dependent
upon calcifications and these can often be due to glandular secretions
in some of the glands that have undergone columnar change. Only
about 20% of biopsies have tumor present (invasive or in situ); hence
most calcifications are benign.

be identified in biopsy samples and further empower 768

our predictive model. 769

In addition to contributions to planning for treatment 770

of high grade DCIS, the model also has implications 771

in assessing the utility of screening mammography. 772

The expected result of a screening program begin- 773

ning at age 40 that would detect pre-invasive or early 774

invasive cancers was a reduction in the number of 775

invasive carcinomas or deaths from cancer later in 776

life. A significant reduction has not been observed, 777

leading public health officials to question the suc- 778

cess of screening mammography. Specifically, a rapid 779

growth phase (on a time scale of 2–3 months) is fol- 780

lowed by a prolonged phase of slow growth (on a time 781

scale of years) as tumor growth becomes hampered 782

by diffusion gradients of cell nutrients. Using input 783

parameters that represent a physiological range seen 784

in DCIS tumors excised at the University of Texas 785

MD Anderson Cancer Center, the model predicts that 786

DCIS tumors will have reached a stationary volume 787

within approximately three months [32]. Thus, within 788

a year’s time most of the in situ tumors will have 789

reached their steady-state volume. If these tumors do 790

not progress to an invasive state, it is unlikely that they 791

will be detected by self-palpation prior to screening. 792

In contrast, aggressive tumors that rapidly progress 793

to an invasive state will begin a rapid growth phase 794

again, now that their growth rate is no longer con- 795

strained by the need for nutrients to penetrate the 796

intraductal space. We would expect these tumors to 797

become large enough to be self-palpated prior to being 798

detected on screening mammography. This expecta- 799

tion is reflected in the finding that symptom-detected 800

breast cancers have more copy number imbalances, 801

which is associated with more aggressive behavior 802

[59]. Thus, the screening process is biased to detect 803

less aggressive tumors that do not progress to an inva- 804

sive state. Based on our estimates of the time to reach 805

steady state, approximately 15% of tumors are detected 806

prior to reaching steady state. The benefit to be real- 807

ized in terms of reduced morbidity and mortality in 808

subsequent decades would only be for the proportion 809

of those tumors that were detected early (15%) and 810

that were likely to invade within one year (67–75% 811

based on SEER estimates of DCIS diagnosed with and 812

without co-existing invasive carcinoma). This would 813

result in a benefit of reduced morbidity and mortal- 814

ity in approximately 10% of the cases diagnosed early 815

by screening. It may be that mammographic screen- 816
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ing, which is limited to yearly surveillance at least in817

part because of the risk incurred by radiation, may818

not be suitable as a screening tool for the timeframe819

over which DCIS may develop, reach steady state,820

and progress to invasive carcinoma. We are currently821

compiling these results for a forthcoming publica-822

tion.823

This study represents a proof of principle that it824

should be possible to incorporate a mathematical mod-825

eling step within current clinical practice to improve826

assessment of tumor volumes and thus the outcome of827

surgery. Since IHC and morphometric measurements828

are performed on patient-specific breast biopsies, the829

clinical value of this mathematical pathology approach830

is that the prediction and resulting surgical planning831

can be tailored for that particular patient.832

Acknowledgments833

MEE: NIH grant 2P30CA016672 for partial funding834

of the immunohistochemical stains and support from835

MDACC. ELB: NINDS NS046810 and NS062184,836

and NIGMS P50GM085. VC: Cullen Trust for837

Health Care; NIH-PSOC grants 1U54CA143907 and838

1U54CA143837; NIH-ICBP grant 1U54CA149196;839

NSF grant DMS-0818104. G. Tomaiuolo, J Kim, A840

Segura, S Sanga, ADM Broom, S Kaliki (UTHSC-841

H), and AKKL Kumar (MDACC), for designing the842

computerized image processing protocols [45] and for843

processing of the pathologic data. K-A Do (MDACC),844

M Royce and H Arias-Pulido (UNM CC) for useful845

discussions and comments. R Bassett, Jr. (MDACC)846

for help with statistical evaluations. This research847

was approved by the Institutional Review Boards at848

UTHSC-H and MDACC.849

1. Supplementary data850

Tables S1 and S2 list the distribution (mean ±851

standard deviation) of the raw immunohistochemistry852

and morphometric data for each of the 17 tumor cases.853

Table S3 lists the measured dimensions of the tumor-854

affected volumes of these 17 tumor cases.855

The PI and AI of each duct were calculated as the856

ratios of the numbers of the positively stained Ki-67857

and Caspase-3 cells to the total numbers of the cells858

within the duct cross sections on the examined slides.859

We averaged these per-duct calculations over all the860

processed ducts for each case (Table S1: columns 2 861

and 3). Also reported are the numbers of the counted 862

duct cross sections (Table S1: columns 4 for PI and 5 863

for AI), as well as the numbers of the total counted cells 864

(Table S1: columns 6 for PI and 7 for AI). Cases 8–28 865

were counted using the grayscale algorithm, while 866

cases 39–51 were processed by the k-mean algorithm. 867

The algorithms occasionally fail to count certain duct 868

cross sections, for which the cells were counted man- 869

ually. 870

We calculated the average Rduct and T (Table S2: 871

columns 2 and 3) over only the ducts containing 872

necrotic cores or entirely filled with viable tumors, 873

excluding hollow ducts. Case 15 showed no necrotic 874

cores, resulting in 〈Rduct〉 = 〈T 〉. Case 48 also resulted 875

in 〈Rduct〉 = 〈T 〉 because its necrotic regions were rel- 876

atively small. The number of ducts used for these 877

measurements for each case is also reported (Table S2: 878

column 4), where the sample sizes are mostly smaller 879

than those of AI and PI because ducts with hollow 880

centers are disqualified due to key assumptions of the 881

model (see Methods). 882

The viable volume fractions f (Table S2: column 883

5) were calculated as ratios of viable tumor volumes 884

to the total DCIS volumes including the host tissues 885

outside the ducts. We obtained f using low-resolution 886

(40 X) images that showed several ducts instead of 887

high-resolution (100 X) ones that focused on the vicini- 888

ties of just one or two ducts that could consequently 889

overestimate f. However, we still found that the calcu- 890

lation of f was considerably affected by sampling the 891

images. Given that our model is relatively less sensitive 892

to f (only through a square-root law in Eq. (2b)), we 893

adopted the average f over all the tumors for our calcu- 894

lation to increase robustness, which gave 〈f 〉 = 0.24 895

with the current 17 cases. 896

We also calculated the tumor cell density in each 897

duct by dividing the total tumor cell count by the viable 898

rim area, and averaged these over all the processed 899

ducts for each case (Table S2: column 6). 900

The volumes of the tumor-affected tissues for each 901

case were estimated by pathologically examining the 902

specimens of the excised tissue samples. The three 903

dimensions (Table S3: columns 2–4) were respec- 904

tively obtained along the AP (anterior-to-posterior), 905

SI (superior-to-inferior), and TS (medial-lateral) axes 906

relative to the breast. The mammographic estimations 907

along the same three axes are also reported (Table S3: 908

columns 5–7). 909
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Table S1

Raw immunohistochemistry data for each case

Case PI (%) AI (%) Number of Number of total
ID counted ducts cell counts

PI AI PI AI

8 9.37 ± 3.41 0.24 ± 0.23 5 3 3178 3539
13 25.90 ± 5.80 8.59 ± 1.06∗ 3 5 2318 913
14 7.87 ± 3.43 0.04 ± 0.06 8 10 11595 13335
15 0.56 ± 0.30 0.10 ± 0.12 9 8 7311 4278
17 3.08 ± 1.97 1.07 ± 1.64 11 7 5480 4778
18.1 0.11 ± 0.16 0.04 ± 0.07 11 18 15308 15320
18.2 13.99 ± 1.95 0.86 ± 0.64 4 6 2006 2753
19 17.43 ± 9.25 0.64 ± 0.42 7 11 2398 3325
21 3.64 ± 1.82 0 12 4 8514 4509
22 16.08 ± 7.06 0.77 ± 1.08 13 10 6576 4581
23 17.07 ± 4.20 2.81 ± 3.01 6 16 2631 5768
28 19.78 ± 4.64 1.10 ± 1.22 33 28 9202 7881
39 3.30 ± 1.56 0.18 ± 0.16 5 7 1891 4384
40 4.39 ± 4.39 0.34 ± 0.58 24 31 22165 26588
42 3.33 ± 2.08 0.25 ± 0.24 11 20 3429 12022
48 5.03 ± 1.27 0.23 ± 0.17 6 5 3249 3040
51 16.24 ± 6.00 1.81 ± 1.59 24 23 8256 11654

∗ Over-stained samples.

Table S2

Raw morphometric data for each case

Case Duct radius Viable rim Number of Viable Cell density
ID Rduct (�m) thickness measured volume (105 cells/cm2)

T (�m) ducts fraction
f (%)

8 422.58 ± 51.00 183.22 ± 57.80 3 36.59 ± 2.81 4.77 ± 0.58
13 243.03 ± 117.64 96.43 ± 31.95 5 16.83 ± 2.64 2.79 ± 0.54
14 204.53 ± 45.28 171.83 ± 34.96 8 23.89 ± 8.41 8.51 ± 1.92
15 147.77 ± 58.06 147.77 ± 58.06 9 31.76 ± 4.59 8.83 ± 1.58
17 115.86 ± 41.80 108.92 ± 46.18 11 19.60 ± 12.94 5.94 ± 1.94
18.1 146.27 ± 48.98 116.35 ± 42.40 11 25.45 ± 10.79 11.20 ± 1.84
18.2 232.75 ± 55.86 111.71 ± 22.59 4 29.46 ± 7.67 3.44 ± 0.70
19 158.75 ± 75.98 78.87 ± 12.53 7 19.11 ± 4.45 3.21 ± 0.60
21 120.68 ± 73.45 113.11 ± 71.70 12 21.12 ± 5.50 5.57 ± 1.27
22 270.87 ± 97.59 97.08 ± 25.85 9 23.63 ± 7.53 4.52 ± 1.13
23 157.62 ± 73.13 134.78 ± 36.43 6 N/A 4.03 ± 0.36
28 135.51 ± 81.34 86.58 ± 36.52 33 26.85 ± 9.06 4.36 ± 1.44
39 119.60 ± N/A 77.55 ± N/A 2 22.03 ± 7.67 N/A∗∗
40 323.17 ± 33.22 223.91 ± 26.82 3 24.07 ± 6.08 N/A∗∗
42 191.82 ± N/A 148.70 ± N/A 2 29.49 ± 7.61 N/A∗∗
48 136.28 ± N/A 136.28 ± N/A 1 7.61 ± 4.95 N/A∗∗
51 293.21 ± 118.09 106.91 ± 24.24 6 20.97 ± 6.40 N/A∗∗

∗∗ Cell density was not calculated for these cases.

Table S3

Measured dimensions for each case

Case ID Pathological dimensions (cm) Mammographic dimensions (cm)

AP∗∗∗ SI∗∗∗ TS∗∗∗ AP∗∗∗ SI∗∗∗ TS∗∗∗

8 0.9 1.1 0.8 1.9 1.8 1.1
13 4.0 3.5 2.5 2.7 1.5 2.7



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

M.E. Edgerton et al. / Patient-specific mathematical pathology of DCIS 15

Table S3

(Continued)

Case ID Pathological dimensions (cm) Mammographic dimensions (cm)

AP∗∗∗ SI∗∗∗ TS∗∗∗ AP∗∗∗ SI∗∗∗ TS∗∗∗

14 1.2 0.8 1.6 2.0 2.1 0.7
15 0.5 1.2 1.5 1.0 1.0 1.5
17 0.5 1.1 2.6 1.0 1.0 0.8
18.1 3.0 1.0 0.4 1.0 1.0 0.5
18.2 5.0 2.8 2.5 0.8 0.8 0.8
19 2.0 0.6 9.8 3.0 9.5 8.0
21 0.9 2.4 4.0 2.0 1.5 2.6
22 1.0 3.2 2.8 5.0 5.0 4.0
23 0.5 2.1 1.5 2.1 1.0 2.1
28 4.5 2.0 2.8 1.2 1.1 1.1
39 0.5 4.5 1.5 1.5 0.8 1.8
40 3.0 4.0 8.0 7.0 3.0 6.0
42 2.0 3.0 6.8 5.0 5.0 5.0
48 1.5 2.0 4.5 3.0 2.5 3.0
51 1.1 1.1 2.2 3.2 3.6 2.4

∗∗∗AP: anterior-to-posterior, SI: superior-to-inferior, TS: transverse plane (medial-lateral).
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