
10 Agent-based cell modeling:
application to breast cancer1

With P. Macklin and M.E. Edgerton

In Chapter 6, we discussed an agent-based cell model that can be applied to a

variety of biological systems, with a particular emphasis on epithelial cancers.

We now illustrate the model by applying it to breast cancer and demonstrating

its use in obtaining theoretical biologic and clinical insight, including quantita-

tive predictions that can be assessed using patient immunohistochemistry and

histopathology data. Theoretical biologic and clinical significance are discussed.

10.1 Introduction

Ductal carcinoma in situ (DCIS) is the most prevalent precursor to invasive

breast cancer (IC), the second-leading cause of death in women in the United

States. The American Cancer Society predicted that 50,000 new cases of DCIS

alone (excluding lobular carcinoma in situ) and 180,000 new cases of IC would

be diagnosed in 2007 [348, 25]. Co-existing DCIS is expected in 80% of IC, or

144,000 cases [399]. Because DCIS is a known precursor to IC, this leads us to

hypothesize that up to 75% of DCIS cases progress to invasion prior to detection

by screening mammography. While DCIS itself is not life-threatening, it is a very

important precursor to IC because (1) it can be treated and (2) if left untreated,

it is likely to progress to IC, which is a deadly disease [518, 370, 585].

Women prefer breast conserving surgery (BCS), also known as lumpectomy,

versus complete mastectomy to treat DCIS [620]; in the United States today,

approximately two-thirds of women diagnosed with DCIS will opt for BCS over

mastectomy. Women who undergo BCS face two problems. First, an estimated

38-72% of women seeking BCS will not have their entire tumor removed in one

surgery and may require up to three surgeries (called re-excisions) for complete

removal of the DCIS [136, 108, 180]. Second, DCIS recurs at the same location

greater than 20% of the time in patients who undergo BCS alone [528]. To combat

this recurrence, women are advised to undergo radiation therapy to the breast,

which induces residual cells of DCIS to apoptose. Even in women who have

been treated with surgery and radiation, DCIS recurs approximately 10% of the

1 This chapter is an extension of the work by Macklin et al. (2009) [435], and an advance copy
of the work to be submitted by Macklin et al. in [436] and Edgerton et al. in [196].
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time [528]. Half of these recurrences already show progression to invasive cancer

(IC). The single most important underlying problem that contributes to both

re-excisions and to recurrences is DCIS that is left inside the breast [619].

Hence, predicting the size and shape of DCIS is critical to successfully erad-

icating the disease in patients and preventing recurrences that often progress

to deadlier invasive carcinoma. In addition, understanding the progression from

DCIS to IC key to developing future treatments to improve patient survival.

Mathematical modeling can play a role in both these tasks. In this chapter, we

apply the agent-based model from Chapter 6 to DCIS. The model is well-suited

to patient-specific calibration, can be modularly extended to focus attention on

specific aspects of biological interest, and can be used for generating testable sci-

entific hypotheses. The model presented here can be incorporated into a broader,

multiscale framework (such as that discussed in Chapter 7) capable of making

patient-specific, clinical predictions of DCIS outcome [194, 195, 138, 436].

10.1.1 Biology of breast duct epithelium

Figure 10.1 Breast duct tree architecture.

As an organ, the breast is organized as a system of 12-15 independent,

largely parallel duct systems: clusters of milk-producing lobules that feed into

a branched duct system that terminates at the nipple [690, 475, 506, 288]. See

Figure 10.1. The duct systems are separated by supporting ligaments and fatty

tissue and drained by the lymphatic system (not shown) [654]. The ducts have

a well-characterized microarchitecture: each duct is a tubular arrangement of
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epithelial cells, surrounded by myoepithelial cells (epithelial cells with muscle-

like properties, such as contracting the duct to transport milk) and a basement

membrane (hereafter BM). The center of the duct, known as the lumen, is filled

with either milk (during lactation) or fluid. See Figure 10.2 (top left). Surround-

ing and supporting the duct is the stroma: a scaffolding of collagen and other

fibers (collectively called the extracellular matrix, or ECM) that is secreted and

maintained by fibroblasts. The stroma also contains blood vessels that supply

oxygen, glucose, and growth factors to the tissue. A key aspect of this architec-

ture is that the epithelial cells in the breast duct have no direct access to oxygen

and nutrients; instead, these must diffuse into the duct through the BM.

Figure 10.2 Top Left: Typical breast duct micro- anatomy. Top Right: Breast duct
epithelial cell polarization. Bottom: Major DCIS types and IDC. Reprinted with
permission from [436].

The arrangement of the epithelial cells in the duct depends upon the polar-

ization of the cells and the anisotropic distribution of different surface adhesion

molecules. Integrins line the cell base and adhere to several ligands (generally

laminin and fibronectin) on the basement membrane; E-cadherin molecules cover

the cell surface between the base and apex and adhere to E-cadherin molecules

on neighboring cells [92]. See Figure 10.2 (top right). The careful orchestration

of integrin-mediated cell-BM adhesion and E-cadherin-mediated cell-cell adhe-

sion helps determine the tissue geometry [303, 688]. While the epithelial cell

population oscillates with the menstrual cycle (e.g., [376, 377]), on average it is

maintained in homeostasis by carefully balancing cell proliferation and apopto-

sis. Microenvironmental changes can trigger internal signaling responses in the

epithelial cells that lead to either proliferation or apoptosis as warranted by the

proper maintenance of the tissue architecture. After apoptotic cells disintegrate
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into apoptotic bodies, they are either absorbed by surrounding epithelial cells or

digested by macrophages that travel through and along the BM [371, 391].

The integrin signaling pathway allows the cells to detect detachment from the

basement membrane: when integrins are adhered to their ligands on the BM,

they send signals within the cell that trigger the production of survival proteins

(e.g., FAK) that inhibit p53-mediated apoptosis [332, 680]. Loss of attachment

to the BM therefore allows apoptosis to occur, thus preventing overgrowth of

cells into the lumen [164]. E-cadherin signaling helps the cells to detect the

presence or absence of neighbors: when E-cadherin is bound to E-cadherin on

neighboring cells, its intracellular domain binds to and sequesters β-catenin near

the cell membrane. This prevents β-catenin from transcribing Cyclin D1, c-myc,

and Axin2—proteins that are associated with cell cycle progression. (See Sec-

tion 2.1.5.) As a result, cell cycling is thus inhibited [71, 600, 430, 315]. When a

neighboring cell dies, E-cadherin signaling is reduced, thereby allowing the cell

cycle to progress. This results in the production of a new daughter cell to fill in

the gap in the duct epithelium. The epithelial cells also respond to hormones

(intercellular signaling molecules) that bind to surface receptors. Estrogen, pro-

gesterone, androgen, prolactin, and epidermal growth factor all affect epithelial

cell proliferation and apoptosis decisions, such as increased proliferation prior

to lacation (to enlarge the breast duct system and prepare the lobules [33])

and increased apoptosis during breast involution (the “shutdown” process after

lactation [56]).

10.1.2 Biology of DCIS

Overexpressed oncogenes and underexpressed tumor suppressor genes can dis-

rupt the balance of epithelial cell proliferation and apoptosis, leading to cell

overproliferation. This can occur either by the accumulation of DNA mutations

(genetic damage) [622] or epigenetic anomalies (e.g., alterations in heritable CH3

methyl groups that suppress key oncogenes) [8]. The transformation from regular

breast epithelium to carcinoma is thought to occur in stages. For simplicity, we

neglect the benign, precursor transformations (e.g., atypical ductal hyperplasia,

or ADH [622]) and focus on DCIS.

In the most well-differentiated classes of DCIS, the epithelial cells main-

tain their basic polarity and anisotropic surface adhesion receptor distribu-

tions, resulting in partial recapitulation of the non-pathological duct structure

within the lumen. These demonstrate either finger-like growths into the lumen

(micropapillary: see Figure 10.2 (bottom:a)), or arrangements of duct-like struc-

tures (cribriform: see Figure 10.2 (bottom:b)) [621]. The cells in solid type DCIS

lack polarity and do not develop these microstructures. Instead, the cells prolif-

erate until they fill the entire lumen (Figure 10.2 (bottom:c)) [164]. The prolifer-

ating cells uptake oxygen and nutrients as they diffuse into the duct through the

basement membrane, leading to oxygen and nutrient gradients (decreasing oxy-

gen/nutrient concentrations with distance from the BM). If the central oxygen is
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sufficiently depleted, the interior tumor cells die and form a necrotic core of cellu-

lar debris (comedo-type solid DCIS: see Figure 10.2 (bottom:c)) [621]. These cells

are typically not phagocytosed by non-apoptotic epithelial cells (none nearby)

and macrophages (too far from the BM). Instead, they swell and burst [51],

and their solid (i.e., non-water) components are slowly calcified [641]. In fact,

mammograms generally rely upon these calcifications for DCIS detection [139].

While it is tempting to regard DCIS as a progression from regular epithelium

to cribriform or micropapillary (“partially transformed”) to solid type (“fully

transformed”), there is insufficient evidence to support such a linear progres-

sion, and indeed, the mutation pathway from noncancerous epithelium to DCIS

is currently an open question [206, 568]. The dominant type of DCIS in any par-

ticular case may well depend upon which genes are mutated; for example, the

cribriform DCIS microarchitecture could be due to hyperproliferation in cells

whose genes regulating polarization (particularly of E-cadherin) are intact. Due

to the current difficulty in fully characterizing DCIS carcinogenesis, there is an

excellent opportunity for mathematical modeling to test competing theories by

generating testable, quantitative hypotheses.

DCIS is a pre-malignant cancer because the basement membrane confines it

to the duct system, blocking metastasis. However, it is an important precursor

stage of invasive ductal carcinoma (IDC), where further genetic or epigenetic

mutations lead to tumor cell motility along the BM, secretion of matrix metallo-

proteinases that degrade the BM, and subsequent invasion into the surrounding

stroma (Figure 10.2 (bottom:d)) [618, 6]. An estimated 3/4 of all DCIS cases

are already invasive at the time of detection [399, 348, 25]. Thus, there is sub-

stantial risk that an undetected DCIS precursor (e.g., ADH) can progress to

IDC between annual mammograms [194]. Predicting the behavior of DCIS is

important to understanding and hopefully preventing progression to IDC.

10.2 Adaptation of the Agent Model

We now adapt the agent model from Chapter 6 to the geometry and biology

of solid-type, non-motile DCIS: tumor cells in the viable rim can be quiescent

(Q), apoptotic (A) or proliferative (P). For simplicity, cells in hypoxic regions

(σ < σH) bypass the hypoxic state (i.e., we neglect H), immediately enter the

necrotic state (N ), and eventually become calcified debris (C).2 Thus, βH = ∞.

Because the cells are assumed non-motile, we neglect the motile state M and

set Floc to zero. We assume that there is no extracellular matrix in the duct

lumen, and so Fcma = 0. Cell-cell adhesion is assumed homophilic between E-

cadherin molecules, and cell-BM adhesion is heterophilic between integrins and

2 In Chapters 6 and 10, σ and g denote oxygen and glucose, which are generalized by the
substrate n in the remainder of the book. In these chapters, n denotes an integer.



Agent-based modeling of breast cancer 221

uniformly-distributed ligands on the BM. In the simulations below, we neglect

the presence of non-cancerous epithelial cells lining the duct.

Parameter Physical Meaning Data Source

σH hypoxic threshold literature [682]

λp oxygen uptake rate by proliferat-
ing tumor cells

[682, 221] and analysis [436]

λn oxygen uptake rate by non-
proliferating tumor cells

[682, 221] and analysis [436]

λt oxygen uptake rate by all tumor
cells

see discussion in the text

λb background oxygen decay rate analysis [436]

〈λ〉 mean oxygen uptake rate in
viable rim

literature [221]

L oxygen diffusion length scale literature [221]

`duct length of breast duct segment set at 1 mm

rduct breast duct radius histopathology measurement

β−1

H hypoxic survival time simplified to 0

β−1

N (= β−1

C ) time to necrose and calcify parameter study [436]

β−1

P mean cell cycle time literature [515]

β−1

A time to complete apoptosis analysis [436] of lit. data [408]

α−1

A mean time to enter apoptosis Cleaved Caspase-3 immunostain

α−1

P mean time to enter proliferative
state

Ki-67 immunostain

Rcca cell-cell adhesion interaction dis-
tance

analysis [436] of cell deformation
data [298]

Rcba cell-BM adhesion interaction
distance

analysis [436] of cell deformation
data [298]

VS/V solid fraction of individual cell analysis [436] of literature data
[442]

ncca, ncba cell-cell and cell-BM adhesion
powers in the potential function
in Section 6.2.2

set equal to 1

nccr, ncbr cell-cell and cell-BM repulsion
powers in the potential function
in Section 6.2.2

set equal to 1

αcca strength of cell-cell adhesion cell density in viable rim

αccr strength of cell-cell repulsion cell density in viable rim

αcba strength of cell-BM adhesion set equal to αcca

αcbr strength of cell-BM repulsion set equal to 5αcba

Table 10.1. Main parameters for the agent-based model of DCIS.

10.2.1 Oxygen and Metabolism

In the DCIS model, we assume that oxygen σ is uptaken at a rate λp by prolifer-

ating cells and λn by non-proliferating cells (including quiescent and apoptotic

cells), and oxygen decays with rate λb in the necrotic core (containing necrotic
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cells and calcified debris) and the duct lumen. In regions containing a mixture

of viable and non-viable tissue and lumen, we assign a volume-averaged uptake

rate. We discuss the orders of magnitude for λp, λn, and λb in Section 10.3.1.

10.2.2 Duct Geometry

We denote the duct lumen by Ω and the duct boundary (BM) by ∂Ω. In this

chapter, we treat the duct as a rectangular region (a longitudinal cross-section of

a cylinder) of radius rduct and length `duct. We terminate the left side of the duct

with a semicircle, as an initial approximation to a lobule. (See Figure 10.3 for a

typical simulation view.) We introduce a framework that allows us to simulate

DCIS growth in arbitrary duct geometries, such as near a branch point in the

duct tree. We represent the duct wall implicitly by introducing an auxilliary

signed distance function d (a level set function) satisfying






d(x) > 0 x ∈ Ω

d(x) = 0 x ∈ ∂Ω

d(x) < 0 x /∈ Ω = Ω ∪ ∂Ω
|∇d(x)| ≡ 1.

(10.1)

The gradient of the distance function gives the normal vector n (oriented into

the lumen) to the interior duct surface. See [437, 438, 439, 440, 230, 441], where

the method is used to describe moving tumor boundaries.

Level set methods were first developed by Osher and Sethian [511] and have

been used to study moving surfaces that experience frequent topology changes

(e.g., merger of regions and fragmentation), especially in the contexts of fluid

mechanics and computer graphics. (See the books by Sethian [605] and Osher

[510] and the references [511, 509, 606].) For more information on the level set

method and its application to fluid mechanics, please see [511, 649, 449, 450, 4,

605, 509, 510, 606].

10.2.3 Intraductal Oxygen Diffusion

We model the release of oxygen by blood vessels outside the duct, its diffusion

through the duct wall ∂Ω and within the duct lumen Ω, and its cellular uptake

and decay (e.g., by reacting with molecules in the interstitial fluid), by
{

∂σ
∂t = D∇2σ − λσ if x ∈ Ω

σ = σB if x ∈ ∂Ω,
(10.2)

where σ is the nondimensional oxygen level (scaled by the oxygen concentration

σ∞ in well-oxygenated tissue near the blood vessels in the stroma), D is the

oxygen diffusion coefficient, λ is the local oxygen uptake/decay rate (generally λ

averages 0.1 min−1 [515], currently assumed equal for all cell types for simplicity),

and σB is the (nondimensional) oxygen level on the basement membrane.
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The oxygen diffusion equation admits an intrinsic length scale L =
√

D/λ that

we use to nondimensionalize space in Eq. (10.2). Here, λ is a characteristic value

of λ. By the literature, λ ≈ 0.1 min−1 and L ≈ 100 µm [515].

10.2.4 Numerical Method

We introduce an independent computational mesh for oxygen that discretizes

the duct lumen with spacing ∆x = ∆y = 0.1 (approximately 10 µm spacing in

dimensional space) to resolve oxygen gradients. We use a cell interaction mesh

with 1 µm spacing to avoid directly testing each cell for iteraction with every

other cell, hence avoiding an O
(
# cells2

)
computational cost.

We use an object-oriented C++ framework, where each cell is an instance of

a Cell class and endowed with instances of Cell properties (proliferation and

apoptosis parameters, initial radius and volume, etc.) and Cell state (cell state,

position, velocity) classes. We order the cells with a doubly-linked list structure,

which allows us to easily delete apoptosed cells and insert new daughter cells.

To update our agent-based model at time t to the next simulation time t+∆t:

1. Update the oxygen solution on the oxygen mesh using standard explicit for-

ward Euler finite difference methods; see Chapter 8 and [436].

2. Iterate through all the cells to update the interaction mesh.

3. Iterate through all the cells to update their states according to Section 6.2.3.

Update the necrosing cells’ radii, volumes, and calcification as described.

4. Iterate through all the cells to update their velocities as described above.

5. Iterate through all the cells to determine max |vi|. Use this to determine the

new ∆t using the stability criterion ∆t < 1
max|vi| .

6. Iterate through all the cells to update their positions according to their

new velocities. We use forward Euler stepping (xi(t+∆t) = xi(t) + ∆tvi(t)),

although improved (e.g., Runge-Kutta) methods are straightforward.

These steps require at most cycling through all the cells. If interaction testing

can be made similarly efficient, then the overall simulation requires computa-

tional effort that is linear in the number of cells.

Efficient Interaction Testing

With spatial resolution given by the interaction mesh (1 micron spacing), we

create an array of linked lists of interactions as follows:

1. Let R = 2maxi
{
ricca

}

2. Initialize the array such that each pointer is NULL.

3. For each cell i, append its memory address to the list for each mesh point

within a distance R of its center xi.

Once complete, at any mesh point (i, j), we have a linked list of cells which are

allowed to interact with a cell centered at or near (xi, yj).
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We use this list whenever we compute a quantity of the form
∑

j

f (celli, cellj) (xk, y`) (10.3)

by contracting the sum to the members of the linked list at (xk, y`). Because

the number of points written to the array is fixed for each cell, this reduces

the computational cost of cell-cell interaction testing to O (# cells), rather than

the more typical O
(
# cells2

)
. Furthermore, this interaction data structure still

allows arbitrary cell-cell interactions. Notice that this computational gain relies

upon the fact that cells can only interact over finite distances.

10.3 Patient-Specific Calibration with Patient Data

To make the model predictive we must constrain the non-patient-specific param-

eters as much as possible (e.g., by literature searches and analysis of the mathe-

matical model behavior across the parameter space) and calibrate the undeter-

mined parameters using available patient-specific data. We now summarize key

parameter estimates made by [436] and follow with a calibration protocol. In this

discussion, we neglect hypoxia and motility, and take βN = βNL = βNS = βC .

10.3.1 Estimating “Universal” Parameters

We first estimate parameters that are common to all patients, based upon liter-

ature searches of theoretical/experimental biology and prior modeling efforts.

Cell Cycle, Apoptosis, and Necrosis/Calcification Times

We estimate that the cell cycle time β−1
P is 18 hours by the modeling literature

(e.g., see [515]). We estimate β−1
A ≈ 8.6 h below in Section 10.4.1, and we estimate

β−1
N ≈ 30 days in Section 10.4.1.

Oxygen Parameters

By the literature, the mean cellular oxygen uptake rate is 〈λ〉 = 0.1 min−1 (in the

viable rim), and L = 100 µm. To estimate the hypoxic threshold σH , we examine

the mitosis function km(σ) in [682], which is the basis of the breast cancer model

in [221]. Ward and King found that at the step function limit, km(σ) ∝ H(σ −
σc); they determined that σc ≈ 0.2 experimentally when σ is nondimensionalized

by σ∞, the far-field nutrient value in non-pathologic, well-vascularized tissue

[682]. Because the step function limit is similar to our αP parameter, our σH
is analogous to σc in [682], and as we have nondimensionalized oxygen by the

nutrient value in well-vascularized, non-pathologic breast tissue, we set σH =

0.2 as well. We observe in our immunohistochemical and histological images

that the quiescent and proliferating viable tumor cells have the same general

size; this suggests that the quiescent tumor cells are relatively metabolically
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active compared to non-cancerous, long-term quiescent cells that generally are

smaller with condensed nuclei (relates to lack of transcriptional activity), reduced

mitochondrial populations [227], and less cytosol. Hence, we estimate that λp
and λn are of similar orders of magnitude. In [436], a parameter study found

that λp � λn was inconsistent with the population dynamic and morphologic

characteristics of DCIS observed in our immunohistochemistry and histologic

data. For simplicity, we set λp = λn = λt and λt = λb and investigate the more

general case in [436]. A statistical analysis of the viable rim thickness and tumor

cell density in multiple breast ducts also supported our approximation that

λp ≈ λn [115, 434].

Cell Mechanics

We estimate the cells’ solid volume fraction (VS/V ) at approximately 10% by

combining the published data of [442] with the assumption that the solid compo-

nent is one-to-ten times denser than water [435, 436]. We estimate the maximum

cell-cell and cell-BM interaction distances Rcca and Rcba using published mea-

surements of breast cancer cell deformations. Byers et al. [93] found the defor-

mation of MCF-7 (an adhesive, moderately agressive breast cancer cell line) and

MCF-10A (a benign cell line) breast epithelial cells to be bounded around 50%

to 70% of the cell radius in shear flow conditions; this is an upper bound on

Rcca and Rcba. Gucke et al. [298] measured breast epithelial cell deformabil-

ity (defined as additional stretched length over relaxed length) after 60 seconds

of stress. Deformability was found to increase with malignant transformation:

MCF10 deformed 10.5%, MCF7 deformed 21.4%, MCF7 deformed 30.4% after

weakening the cytoskeleton, and MDA-MB-231 (an aggressive cancer cell line)

deformed 33.7%. Because DCIS is moderately aggressive, we use the MCF7 esti-

mate and thus set Ri
cca = Ri

cba = 1.214ri. It is likely that the cell-cell and cell-BM

adhesive forces decrease rapidly with distance, and so we used the lowest (sim-

plest) adhesion powers that capture a smooth decrease at the maximum inter-

action distances: ncca = ncba = 1. For simplicity, we also set nccr = ncbr = 1.

10.3.2 Calibrating Patient-Specific Parameters

We now present the patient-specific portion of the calibration protocol, as

detailed in [436]. The following patient-specific data are available:

r Average duct radius 〈R〉 and average viable rim thickness 〈T 〉, measured

directly on the IHC images.
r Average cell density 〈ρ〉 in the viable rim, measured by counting nuclei and

computing the viable rim size;
r Cell confluence f in the viable rim, defined to be the area fraction of the viable

region occupied by cell nuclei and cytoplasm;
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r Proliferating index PI, measured by staining images for Ki-67, (a nuclear

protein marker for cell cycling), and then counting the total number of Ki-67-

positive nuclei versus the total number of nuclei; and
r Apoptotic index AI, measured by staining images for cleaved Caspase-3, an

“executioner” caspase involved throughout most of the apoptosis process.

Because Caspase-3 is a cytosolic protein, we identify cleaved Caspase-3 posi-

tive cells by comparing the whole cell staining intensities. The apoptotic index

is then computed across the viable rim as with PI.

Geometry:

We match the simulated duct radius to the mean measured duct radius 〈R〉. We

obtain the average (equivalent) cell radius from the mean viable rim cell density

〈ρ〉 and measured confluence f (0 ≤ f ≤ 1) by the relation:

f = 〈ρ〉πr2. (10.4)

Oxygen:

For the special case we consider here, λp = λn = 〈λ〉; we assume that λb is

stipulated as an additional constraint Λb = λb/〈λ〉. The more general case is

considered by separating the viable rim into fluid, proliferating cells, and non-

proliferating cells and applying additional constraints on both λn/〈λ〉 and λb/〈λ〉
to uniquely determine the oxygen uptake rate [436].

Next, we use the mean viable rim thickness 〈T 〉 as an indicator of oxygenation

and thus determine the boundary oxygen value σB . In 2D (the 3-D results are

in Section 10.4.2), the steady-state oxygen profile away from the leading edge

reduces to a simple 1-D equation

0 =

{
Dσ′′ − 〈λ〉σ 0 < x < 〈T 〉
Dσ′′ − Λb〈λ〉σ 〈T 〉 < x < 〈R〉 (10.5)

with the boundary and matching conditions

σ(0) = σB, σ(〈T 〉) = σH , σ′(〈R〉) = 0 (10.6)

D lim
x↑〈T 〉

σ′(x) = D lim
x↓〈T 〉

σ′(x). (10.7)

Here, x is the distance from the duct wall.

After applying all conditions except σ(0) = σB , we have

σ(x) = σH







[

cosh
(

x−〈T 〉
L

)

−√
Λb tanh

(
〈R〉−〈T 〉
L/

√
Λb

)

sinh
(

x−〈T 〉
L

)]

0 < x < 〈T 〉

[

cosh
(

x−〈T 〉
L/

√
Λb

)

− tanh
(

〈R〉−〈T 〉
L/

√
Λb

)

sinh
(

x−〈T 〉
L/

√
Λb

)]

〈T 〉 < x < 〈R〉.

We evaluate at x = 0 to determine σB :

σB = σH

[

cosh
〈T 〉
L

+
√

Λb tanh

( 〈R〉 − 〈T 〉
L/

√
Λb

)

sinh
〈T 〉
L

]

(10.8)
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Lastly, we compute the mean oxygen value across the viable rim:

〈σ〉 = σH
L

〈T 〉

[
√

Λb tanh

( 〈R〉 − 〈T 〉
L/

√
Λb

)(

cosh
〈T 〉
L

− 1

)

+ sinh
〈T 〉
L

]

. (10.9)

Population Dynamics:

By the analysis in Section 6.5, given βP , βA, and measurements of PI and AI,

we solve Eqs. (6.51)-(6.52) to steady state to determine 〈αP 〉 and αA:

〈αP 〉 =
βP
(
PI + PI2

)
− βAAI · PI

1−AI− PI
(10.10)

αA =
βA
(
AI−AI2

)
+ βPAI · PI

1−AI− PI
. (10.11)

We calibrate the functional form for αP by combining this result with the com-

puted mean oxygen in the previous step and solving for αP :

〈αP 〉 = αP
〈σ〉 − σH
1− σH

. (10.12)

Cell-Cell Mechanics:

For confluent cells in solid-type DCIS (f = 1), we convert the mean density 〈ρ〉
to an equivalent cell spacing s (between cell centers) via

s =

√

2√
3〈ρ〉

, (10.13)

which is based upon matching the mean cell density to a hexagonal cell packing.

We balance the cell-cell adhesive and repulsive forces at this equilibrium spacing.

If ncca = nnccr = 1 and Rcca = 1.14r, and 〈R〉ccr = r, and E = 1, then

αcca

αccr
=

ϕ′ (s; 2r, nccr)

ϕ′ (s; 2Rcca, ncca)
=

(
1− s

2r

)nccr+1

(
1− s

2.428r

)ncca+1 . (10.14)

This leaves a free parameter: in effect, the density determines the equilibrium

spacing but does not stipulate how strictly that density is enforced. It may be

possible to to fully constrain the mechanics by matching the simulation to the

variance in ρ; this is the subject of ongoing research. In the meantime, we have

found that setting αccr = 8 sufficiently enforces the density [436].

Cell-BM Mechanics:

Because we have no direct data on the cell-BMmechanical interactions, we choose

the parameters to prevent cells from penetrating the duct wall; αcbr = 5 suffices

when αcba = αcca. It should be possible to further constrain the parameter values

by comparing patient data to the simulated tumor propogation speed and leading

edge morphology as αcba and αcca are varied; such parameter studies are the topic

of ongoing research [436].
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10.3.3 Sample Patient Calibration and Verification

Quantity Measured Mean Units

Duct Radius rduct 170.10 µm
Viable Rim thickness T 76.92 µm

PI 17.43 %
raw AI 0.638 %

corrected AI 0.831 %
Cell density ρ 0.003213 cells/µm2

Table 10.2. Key data for a de-identified patient.

We demonstrate the calibration protocol on IHC and histopathology mate-

rial from a de-identified mastectomy patient from the M.D. Anderson Cancer

Center (de-identified case number 100019). The measurements for this patient

are given in Table 10.2. Because the cells are nearly confluent in the viable rim,

we estimate f ≈ 1. By the cell-cell mechanics calibration above (Eq. (10.4)),

rcell =
√

1/(ρπ) ≈ 9.953 µm. By the estimates of cell deformability above, we

set Rcca = Rcba = 1.21rcell ≈ 12.0834.

By the oxygen protocol (with λp = λn = λb = 0.1), we estimate the boundary

condition at σB ≈ 0.3861 (Eq. (10.8)), and 〈σ〉 ≈ 0.2794 (Eq. (10.9)). We further

investigate the impact of λp 6= λn and λp 6= λb in [436].

Using the measured AI and PI, along with β−1
P = 18 h and β−1

A = 8.6 h (see

Section 10.4.1), we estimate population dynamic parameters at

α−1
A ≈ 47196.349 min, and α−1

P ≈ 434.527 min.

See Eqs. (10.11)-(10.12).

For the mechanics, the protocol gives s ≈ 18.957 µm (Eq. (10.13) αccr = 8, and

αcca ≈ 0.3915 (Eq. (10.14)). We set αcba = αcca and αcbr = 5, although we are

currently investigating the impact of the balance between αcca and αcba in [436].

Verification of Calibration

All figures given as mean ± standard deviation
Quantity Patient Data Simulated

PI (%) 17.43 ± 10.48 17.193 ± 7.216
AI (%) 0.831 ± 0.572 1.447 ± 3.680

Viable rim thickness (µm) 76.92 ± 13.70 80.615 ± 4.454
Cell density (cells/µm2) 0.003213 ± 6.89e-4 0.003336

Table 10.3. Verification of the Patient-Specific Calibration: Note that there is no stan-
dard deviation for the simulated cell density because it was calculated over the entire viable
rim.

To verify the calibration, we seeded a small section of a 1 mm virtual duct

with tumor with AI and PI matching the IHC measurements. We then ran the

simulation to time t = 30 days and checked the model’s predictions of AI, PI,
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viable rim thickness, and density in the viable rim. (See Section 6.6.1 for the fully

dynamic simulation.) We sliced the computational domain at time t = 30 days

into 6 µm-thick slices and performed virtual immunohistochemistry on those

slices. We calculated the viable rim thickness in each slice, and the average cell

density over the entire viable tumor region. See Table 10.3. The proliferative

index matches extremely well, and the apoptotic index is within error tolerances.

Because apoptosis is a rare stochastic event (< 1%) in a region with fewer than

500 cells, we expect considerable noise; indeed, this is observed in the patient AI

as well. The viable rim thickness is within the error bounds, and the cell density

is in excellent agreement. Because all the numerical targets (outlined in Table

10.2) are within the error bounds, the calibration was a success.

Figure 10.3 Verification of the morphological features of the calibrated simulation.
Top: Simulation at time 30 days. White cells are quiescent, striped cells are
proliferating (virtual Ki-67), black cells are apoptotic (virtual cleaved Caspase-3),
medium gray cells are necrotic, and central dark gray cells are calcified debris. Small
cells along the BM are noncancerous epithelium. Bottom Left: Ki-67 immunohisto-
chemistry of a duct cross-section. White arrows show Ki-67 positive nuclei. The gray
arrow shows necrotic debris. Bottom Right: H&E staining showing calcifications
(black arrow) and the gap between the viable rim and necrotic core (white arrow).
Reprinted with permission from [436].

We also compared the general tumor morphology to H&E stains (Figure 10.3:

bottom right) and the spatial distribution of proliferating cells to Ki-67 immuno-

stains (Figure 10.3: bottom left) from the patient. The virtual DCIS reproduced



230 Chapter 10. Agent-based modeling of breast cancer

the expected tumor microarchitecture: a viable rim closest to the duct wall, an

interior necrotic core, and sporadic interior microcalcifications. The simulation

also recapitulated the general distribution of proliferating cells across the viable

rim: in both the simulation and the Ki-67 imaging, cycling tumor cells were

observed most frequently along the duct wall where oxygen is most plentiful, and

almost never at the peri-necrotic boundary where substrate levels are lowest. This

evidence supports our model of αP depending upon σ. This theme is discussed

in greater detail in Section 10.4.2.

10.4 Case Studies

We close the chapter with three case studies using the agent model to facilitate

predictive breast cancer research. First, we illustrate the utility of the model

in estimating biological parameters that are difficult or impossible to measure

experimentally. Second, we use the analytical volume-averaged behavior of the

model to generate testable biological hypotheses of DCIS behavior, test those

hypotheses using actual DCIS data, and use the results to refine and extend our

model. Lastly, we demonstrate the use of the agent model in calibrating multi-

scale cancer simulation frameworks, and compare the framework’s predictions of

tumor size to actual clinical data. We discuss the clinical signifigance of this last

application and discuss future work.

10.4.1 Estimating Difficult Physical Parameters

Apoptosis Time β−1
A

The time course from the initial signal to commence apoptosis to final cell lysis

has been difficult to quantify [329]. Early reviews by key apoptosis researchers

estimated the early cellular events in apoptosis comprise a fast process on the

order of minutes, with digestion of apoptotic bodies occuring within hours of

phagocytosis [371]. Hu et al. [329] conducted a detailed in vivo observation

of apoptosis of epithelial cells in the rat hippocampus, observing cells breaking

up in 12-24 hours and the complete elimination of apoptotic bodies within 72

hours. Experimental work in [595] similarly observed most apoptotic processes

on the order of hours. This provides a bound for β−1
A ≤ 24 h. It also suggests that

apoptotic bodies are absorbed by surrounding cells in under 48 hours after cell

lysis. In total, the experimental observations in the literature lead us to estimate

β−1
A ≈ O(10h).

To estimate βA for breast epithelial cells, we build on our working hypothesis

that cancer cells use the same basic mechanisms of proliferation and apoptotis as

noncancerous cells, only with altered frequency [302]. Hence, we postulate that

βA and βP are the same for DCIS cells lines and noncancerous breast epithelial

cells. Eq. (6.50) in Section 6.5 gives us a means to estimate βA: assuming that on

average, noncancerous breast epithelial tissue is in homeostasis (when averaged
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through the duration of the menstrual cycle), then Ṅ = 0, and we find

βA = βP
P

A
= βP

PI

AI
. (10.15)

In [408], the average proliferative and apoptotic indices of noncancerous breast

epithelial cells in several hundred pre-menopausal (aged under 50 years old)

women were measured at 0.0252± 0.0067 and 0.0080± 0.0006, respectively.

While the AI and PI can vary considerably in time due to hormone cycling in

the mestrual cycle [495], when averaged over many women (who fall at different

points in this cycle), the effects of the monthly variation should be cancelled out.

Based upon a cell cycle time β−1
P = 18 h, we estimate βA = 0.175 h−1, giving an

estimated time for apoptotis of approximately 5.7 h. This is consistent with our

estimated order of magnitude.

In the same study, the PI and AI were measured over several hundred post-

menopausal women (aged over 50 years old) at 0.0138± 0.0069 and 0.0043±
0.0007, respectively. Using these figures gives a similar estimate βA ≈ 0.178 h−1.

The similarity of the figures in pre-menopausal and post-menopausal women

supports our working hypothesis that βA and βP are relatively fixed for the cell

type, even when apoptosis and proliferation occur with differing frequencies

and in different hormonal environments. We also note that conducting the same

calculation with the data from [495] gives βA ≈ 0.26 h−1 and an estimated apop-

tosis time of 3.9 h. This work used a much smaller sample size, but nonetheless

is generally consistent with our estimate.

We now attempt to improve our estimate to account for detection shortcomings

in the immunostaining. (See the introduction in [190] for a good overview of the

current methods of detecting apoptotic cells in histologic tissue cultures.) The

AI measurements in [408] were obtained by TUNEL assay, which relies upon

detecting DNA fragmentation. According to the detailed work on Jurkat cell

apoptosis in [595], there was approximately a 3 hour lag between the inducement

of apoptosis (observable by rapid changes in mitochondrial membrane potential

voltage and the ratio of ATP to ADP) and the detection of DNA laddering

and chromatin condensation. Cleaved Caspase-3 activity was neglibible for the

first 60 minutes and steadily climbed thereafter, peaking after 180 minutes and

reaching approximtely 10% of that peak in 50-60 minutes. On this basis, we

would expect that TUNEL-assay-based AI figures fail to detect approximately

the first 3 hours of apoptosis, and cleaved Caspase-3-based AI stain should fail

to detect the first one-to-two hours. Thus, we increase our estimate for β−1
A to 8.6

hours. This also gives “correction factors” to account for undetected apoptotic

cells by TUNEL assay and cleaved-Caspase-3 immunostaining:

AIactual ≈
8.6

5.6
AITUNEL, and (10.16)

8.6

7.6
AICaspase-3 ≤ AIactual ≤

8.6

6.6
AICaspase-3. (10.17)
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Calcification time β−1
C

There are little-to-no literature data available on the time to complete necrosis

and calcify the breast tumor cells. The best available experimental data are

generally animal time course studies of arterial calcification; we use these to

estimate the order of magnitude of β−1
C . Time course studies on post mortem

cardiac valves by [350] observed significant tissue calcification between 7 days

(10% increase in Ca incorporation) and 14 days (40% increase) after injection by

TGF-β1. Lee et al. [407] examined a related process (elastin calcification) using

a rat subdermal model, demonstrating calcification to occur gradually over the

course of two-to-three weeks. Gadeau et al. [251] measured calcium accumulation

in rabbit aortas following oversized balloon angioplasty injury. Calcified deposits

appeared as soon as 2-4 days after the injury, increased over the course of 8 days,

and approached a steady state between 8 and 30 days. Hence, we estimate β−1
C

is on the order of days to weeks.

To sharpen our estimate, we conducted a parameter study on the calcifica-

tion time parameter β−1
C using the fully dynamic model (See Section 6.6.1) that

we calibrated in Section 10.3.3. We varied β−1
C from 12 hours to 30 days and

simulated our calibrated DCIS model to 30 days; the results are in Table 10.4.

We found that calcification times under 15 days lead to necrotic cores that were

nearly entirely calcified; this is not observed in H&E image data. See Figure

10.3, bottom right, black arrow. On the other hand, the 30-day calcification time

lead (as expected) to a complete absence of microcalcifications in the core at time

30 days. Because DCIS tumors are hypothesized to grow to steady state in as

little as two-to-three months [194, 195, 138], we expect microcalcifications by

this time. Hence, our sharpened estimate of β−1
C is 15 days, consistent with the

literature. Parameter studies such as these are significant, because they allow

us to estimate physical quantities that are difficult or impossible to determine

experimentally.

β−1
C 12 hours 1 day 5 days 15 days 30 days

% of core calcified 94.0% 83.7% 51.1% 6.9% 0%

Table 10.4. Parameter study on the calcification time.

10.4.2 Generating and Testing Hypotheses

Recall that when the agent model behavior is averaged across the entire viable

rim, we obtain a nonlinear system of ODEs in PI and AI:

ṖI = 〈αP 〉 (1−AI− PI)− βP
(
PI + PI2

)
+ βAAI · PI

ȦI = αA (1−AI− PI)− βA
(
AI−AI2

)
− βPAI · PI.

(10.18)

As detailed earlier, for fixed AI, PI, βA, and βP , this can be used to determine

〈αP 〉 and αA, and ultimately, αP . If instead we regard αA and αP as fixed and

replace 〈αP 〉 with αP (S, σ, •), we obtain a nonlinear system for AI and PI that
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Figure 10.4 Ki-67 immunohistochemistry for ducts F3 (left) and F19 (right) for
de-identified patient case 100019. Ki-67 positive nuclei stain darkly in the images.
Reprinted with permission from [436].

varies with σ. If we solve the system to steady state for σH < σ < 1 , we can

use the model to predict the relationship between proliferation and oxygen avail-

ability. In [435], this analysis led us to hypothesize Michaelis-Menten population

kinetics: for sufficient nutrient availability, proliferation saturates, indicating that

oxygenation is no longer the primary growth-limiting factor.

We now test this hypothesis based upon a careful analysis of Ki-67 immuno-

histochemistry in two ducts (F3 and F19) for a DCIS patient (de-identified case

100019) [194, 195, 138]. See Figure 10.4. For each of these ducts, we calculate the

distance of all nuclei and Ki-67 positive nuclei to the duct wall, the mean distance

from the duct centroid to the duct wall (i.e., the radius R), and the mean duct

viable rim thickness T . Next, we create a histogram of Ki-67-positive nucleus

distances to the duct wall (Figure 10.5, first row), all nucleus distances to the

duct wall using the same histogram “bins” (Figure 10.5, second row), and divide

these to obtain the proliferative index (PI) versus distance from the duct wall

(Figure 10.5, third row).

Next, we estimate the 3-D steady-state oxygen profile through the cylindrical

ducts (assumed radially symmetric with no variation in the longitudinal direc-

tion):

0 = L2

(

σ′′ +
1

r
σ′
)

− σ, 0 < r < R (10.19)

with boundary conditions

σ(R − T ) = σH , σ′(0) = 0, (10.20)

The solution is

σ(r) =
σH

I0
(
R−T
L

)I0

( r

L

)

, (10.21)
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Figure 10.5 Histograms of Ki-67 positive nuclei vs. distance from duct wall (top row)
and all nuclei vs. distance from duct wall (middle row), and proliferative index vs.
distance from the duct wall (bottom row). These measurements are for ducts F3 (left
column) and F19 (right column). Reprinted with permission from [436].

where L is the diffusion length scale (assumed 100 µm by [682, 221]), In is

the nth-order modifed Bessel function of the first kind, σ is nondimensionalized

by the normoxic oxygen level in non-pathological tissue, and σH is the hypoxic

threshold oxygen value (assumed 0.2 by [682, 221]). The mean value of the oxygen

solution in the viable rim (R − T < r < R) is given explicitly by

〈σ〉 = σH

I0
(
R−T
L

)
2L

2RT − T 2

(

RI1

(
R

L

)

− (R − T )I1

(
R− T

L

))

. (10.22)

For the duct in F3,

R ≈ 188.4634 µm, T ≈ 119.0256 µm, and 〈σ〉 ≈ 0.282145,

and for the duct in F19,

R ≈ 217.5548 µm, T ≈ 97.9602 µm, and 〈σ〉 ≈ 0.280459.
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Figure 10.6 Comparison of the predicted PI curve (solid curve) with data from duct
F3 (dashed curve) and duct F19 (dotted curve) for case 100019. Reprinted with
permission from [436].

By correlating the oxygen solutions (not shown) with the PI profiles, we esti-

mate the relationship between the measured PI and σ in the ducts. We plot these

curves for F3 (dashed curve) and F19 (dotted curve) against the predicted curve

(solid curve) from [436] in Figure 10.6. As we can see, the theoretical predic-

tions and measurements agree qualitatively but not quantitatively. We conclude

that while proliferation (given by PI) correlates with oxygen levels throughout

the tumor, oxygenation alone cannot fully determine PI. Hence, we hypothe-

size that there must be additional heterogeneities in other microenvironmental

factors (e.g., EGF), gene expression, or protein signaling across the tumor.

The next natural question is whether we can account for these hetergeneities

with our current functional form by calibrating the agent model to the individual

ducts. If we can, then this is further evidence that (i) we have chosen a suitable

theoretical stochastic framework for the agent model, and (ii) future work must

incorporate more sophisticated gene/protein signaling models. To address this

question, we next calibrate the agent model for each duct to determine αA and

αP . We use AI = 0.008838 in each duct as in [436], and PI, R, and T as measured

separately for each duct above. For the duct in F3,

PI = 0.281030, αA ≈ 0.00162405 h−1,

〈αP 〉 ≈ 0.0277579 h−1, and αP (S, •) ≈ 0.270331 h−1;

and for the duct in F19,

PI = 0.148045, αA ≈ 0.00129067 h−1,

〈αP 〉 ≈ 0.0110190 h−1, and αP (S, •) ≈ 0.109562 h−1.
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Figure 10.7 Comparison of the hypothesized (solid) and measured (dashed and dotted)
PI vs. σ curves for duct F3 (dashed) duct F19 (dotted). Reprinted with permission
from [436].

Using this, we generate PI-vs-σ curves for the individual ducts based upon

Eq. (10.18) and compare them to the measured data in Figure 10.7. There is

generally much improved quantitative agreement between the predicted (solid)

and measured (dashed and dotted) curves. The difference in the predicted curves

for the two ducts is due to the substantial difference in αP : αP is much greater

for F3, which has the overall higher PI curve.

We next examine the data in the ducts (Figure 10.4) within the context of

our modeling framework and the predicted PI-vs-σ curves to generate additional

biological hypotheses. Notice that the cell density is lower in F3 (Figure 10.4 left:

larger nuclei and cells with greater spacing between cells) than in F19 (Figure

10.4 right: smaller nuclei and cells with less spacing between cells). These leads

us to hypothesize that αP decreases with increasing cell density. E-cadherin/β-

catenin signaling may be the physiological explanation of the phenomenon: when

E-cadherin is bound to E-cadherin on a neighboring cell, β-catenin binds to the

phosphorylated receptors, blocking its downstream pro-proliferative activity.

(See Section 2.1.5.) For higher cell densities, more cell surfaces are in contact

with one another, providing greater opportunities for E-cadherin binding; we

consequently hypothesize that cell density correlates with cell cycle blockade

by the E-cadherin/β-catenin pathway, resulting in the apparent relationship

between cell density and αP . Further evidence can be seen in duct F19 (Figure

10.4, right): the majority of the proliferation activity is in a single layer of cells

along the duct wall. Because these cells are adhered to the basement membrane,

they present less surface for E-cadherin binding activity (relative to the interior

cells), resulting in reduced E-cadherin blockade of proliferation.
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These hypotheses can be tested by correlating αP with cell density in a

larger number of ducts, performing IHC for β-catenin activity, and correlating

β-catenin-mediated transcription (indicated by presence of β-catenin in the cell

nuclei) with cell density and distance from the duct wall. One could use these

data to hypothesize, calibrate, and test new functional forms for αP , such as:

αP (S, σ, •, ◦) = αP (•, ◦)
(

1− E〈E〉 ρ

ρmax

)(
σ − σH
1− σH

)

, (10.23)

where ρ is the local cell density, ρmax is the density at which PI ≈ 0, E is the cell’s

(nondimensional) E-cadherin expression, and 〈E〉 is the mean E-cadherin expres-

sion for the tumor. In such a formulation, αP (•, ◦) determines the cell’s Q → P
transition rate in normoxic conditions with minimal E-cadherin signaling, and

depends upon the cell’s genetic profile • and potentially other signaling and/or

microenvironmental factors ◦. These ideas are the topic of ongoing research by

Macklin, Cristini, Edgerton, and others.

10.4.3 Calibrating Multiscale Modeling Frameworks: Preliminary Results

In Chapter 7, we discussed a multiscale modeling framework where data from

various sources and scales (e.g., molecular data from IHC, cell-scale data from

motility assays, and tissue-scale geometric data from MRI) are propogated

throughout the framework through appropriate, dynamic upscaling and down-

scaling between the scales. The net result is a simulator that can simulate whole

3-D tumors in large microenvironments while efficiently incorporating molecular-

and cell-scale dynamics (e.g., hypoxic signaling and cell motility) where needed.

Recall that the overall change in the number of cells N is given by

Ṅ = (βPPI(σ)− βAAI)N, (10.24)

where we write PI(σ) to emphasize the dependency of PI on oxygen levels as

demonstrated in Section 10.4.2. For the continuum model, the analogous form

(neglecting cell transport) is given by

ρ̇ = (λMσ − λA) ρ. (10.25)

By averaging across a fixed volume and equating these terms, we estimate that

λM ≈ βP 〈PI〉
〈σ〉 , and λA ≈ βAAI, (10.26)

leading us to a preliminary upscaling between the agent and continuum models:

A =
λA
λM

= 〈σ〉 βAAI
βP 〈PI〉

, (10.27)
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or alternatively (by equating cell proliferation when σ = 1 in both models),

λM ≈ βPPI(1) ⇒ A ≈ βAAI

βPPI(1)
. (10.28)

Case ID Subtype Grade A L0 (µm) R (cm)
(predicted)

R (cm) (geo-
metric average
of measured
values∗∗∗

Model
Prediction
Accurate

14 Cribriform 2 0.004 171.83 34.63 0.58 -
19 Mixed∗∗ 3 0.0247 78.87 1.72 1.14 +
8 Cribriform 2 0.0342 183.22 5.52 0.46 -
28 Solid 3 0.0368 86.58 1.33 1.47 +
13 Solid 3 0.0373 96.43 1.51 1.64 +
22 Cribriform 3 0.0441 97.08 1.30 1.04 +

18(L) Mixed∗∗ 3 0.0498 111.71 1.44 1.64 +
21 Cribriform 2 0.0601 113.11 1.17 1.03 +
23 Solid 3 0.120 134.78 0.75 0.58 +
15 Cribriform 1 0.132 147.77 0.75 0.48 +
17 Mixed∗∗ 2 0.223 108.92 0.28 0.56 +

18(R) Cribriform 1 0.280 116.35 0.24 0.53 +

Table 10.5. Summary of pathological features with parameter values and predictions for
index series∗
∗ Volume density of 24.8% averaged over all cases was used for f
∗∗ Mixed Subtype denotes mixed solid and cribriform subtypes
∗∗∗ Calculated geometric mean radius based upon measured dimensions

We applied the upscaling in Eq. (10.27) to the AI and PI data for 12 de-

identified index cases obtained from archived mastectomy patient material at

the M. D. Anderson Cancer Center. (See [196] for more information on how the

cases were selected and the patient tissues were prepared and processed to obtain

AI, PI, viable rim thickness, and viable volume fraction.) The data are given

in Table 10.5. Applying Eq. (10.27) to this data, we obtained a patient-specific

value of A for each case. See the fourth column of Table 10.5.

Next, we predicted the non-dimensional steady-state tumor size as a function

of A, based upon solving the model in [151] (see Chapter 3) with spherical

symmetry. The resulting curve is in Figure 10.8 (dashed curve). To properly

compare this predicted relationship between A and the nondimensional tumor

size R for the individual cases, we must properly determine the patient-specific

length scale L to nondimensionalize the patients’ measured tumor sizes (column

7 in Table 10.5). The diffusional length scale used by [151] (see Section 10.2.3)

was formulated for solid tumors, whereas DCIS grows in ducts that comprise

a fraction of the measured tumor volume. We modify the length scale by re-

examining the nutrient transport equation. If f is the volume fraction of the

breast tissue occupied by viable tumor, then the nutrient equation can be altered

to describe the reduced uptake in the overall tissue:

0 = D∇2σ − fλσ, (10.29)
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Figure 10.8 Validation of model predictions: Solid-type (q), cribriform-type (s),

and mixed-type (f) DCIS plotted against the model prediction (dotted line) from
[151]. The shaded region gives the standard deviation in A (measured in individual
duct spaces) for each case.

which admits the modified length scale

L =

√

D

fλ
=

1√
f
L0. (10.30)

This scale now accounts for the depletion of oxygen across the entire cancerous

region, rather than only within the solid tumor portion. We used an average

value of f = 0.248 across all 12 index cases [196].

We used the measured viable rim thickness (Table 10.5: column 5) to estimate

L0 for each case; this takes into account the variability from patient to patient in

the vascularity of the tissue between the ducts, differences in tumor cell density,

as well as any differences in the cellular oxygen uptake rates. We nondimen-

sionalized the measured tumor sizes using this length scale (Table 10.5: column

7). These predictions are presented as the labeled points in Figure 10.8. There

was good qualitative and quantitative agreement between the predictions (dot-

ted curve) and measurements (plotted points) for these index cases. To better

quantify the quality of the predictions, we also estimated the measurement error

(shaded region) based upon the standard deviation in AI and PI (horizontal

breadth of the region). Ten of the twelve cases (83.33%: labeled ‘+’ in Table

10.5: column 8) of the cases fell within the error estimate. The remaining two

cases (16.67%) substantially over-estimated the tumor sizes.

Biological and modeling significance

The success of the model in predicting the tumor sizes serves to validate the

biological modeling hypotheses at all scales, the calibration technique, and the

upscaling linking the scales. Had any of these been invalid, then the model pre-

dictions would likely have been much less accurate.
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At the cellular scale, the successful predictions validate the fundamental depen-

dency of proliferation upon oxygen and nutrient availability, as well as the rel-

ative independence of apoptosis with respect to nutrient availability; the latter

runs counter to the clear link between hypoxia and necrosis, underscoring the

importance in properly modeling the nuances in cell death at the cellular scale.

This theme was further explored in Section 6.6.3.

Given the successful upscaling, the work gives credence to the functional forms

for the cell proliferation and apoptosis parameters λM and λA. This provides a

concrete connection between cell-scale measurements (PI and AI) and macro-

scopic model quantities (λM and λA), allowing better physical interpretation

of those macroscopic parameters. The parameter λM measures the rate of cell

division in normoxic tissue, and its rate should be inversely proportional to cell

cycle time β−1
P plus the mean waiting time between cell cycles, here functionally

encapsulated in PI. Similarly, the parameter λA gives the mean rate of cell death,

which incorporates both the time scale of apoptosis (β−1
A ) and the mean wait-

ing time to apoptosis (encapsulated in AI). Both parameters implicitly involve

tumor genetics and proteomics through AI and PI.

These results and a similar analytical upscaling suggest a functional form

for calibrating the necrosis volume loss parameter λN in our earlier contin-

uum models in [432, 437, 438, 230, 439, 433, 440, 441] and Chapter 3:

λN ≈ βNL (1− VS/V ), where β−1
NL is the mean time for necrotic cells to lyse

and lose their water content, and VS/V is the non-water fraction of each cell.

In Section 6.6.3, we estimated β−1
NL is on the order of 1 to 5 days, and in Sec-

tion 10.3.1, we estimated VS/V ≈ 0.1; hence, we estimate that λN is in the

range 0.18 day−1 ≤ λN ≤ 0.9 day−1. This range is consistent with prior estimates

using alternative approaches. In parameter studies on λN/λM conducted in [439],

0.1 day−1 ≤ λN ≤ 1.0 day−1 gave necrotic core sizes and morphologies consistent

with in vitro tumor spheroids such as in [147]. Furthermore, calibration work on

non-calcified glioblastoma multiforme in [228] estimated λN ≈ 0.7 day−1.

At the whole-tumor scale, the good model predictions validate the nutrient and

oxygen diffusional limit to tumor growth, even in vascularized tissue [151, 147].

In this case, the diffusional limit theory holds well once appropriately adapted

to growth in a sparse duct microarchitecture, interspersed by well-vascularized

breast stroma: at the macroscopic scale, this is completely analogous to growth

of a well-vascularized tumor. The model success also validates the modification

we made to the oxygen length scale to account for the breast tissue microarchi-

tecture, and points to likely success when we more fully integrate this microar-

chitecture into the cell- and multicell-scale tumor behavior.

Lastly, this early success suggests that for short time scales or near steady

state (when parameter values are relatively constant), we can calibrate and pre-

dict tumor growth based upon measurable physical quantities (proliferation and

apoptosis rates, etc.) alone, without need for precise proteomic and genetic infor-

mation that ultimately determine those physical quantitites. In effect, cancer be

treated as an engineering problem determined by physical processes, without
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regard for the genetic and molecular basis for those processes. However, as our

work in Section 10.4.2 highlights, the molecular (and hence phenotypic) charac-

teristics of a tumor can vary considerably even for fixed times. Hence, molecular-

and cellular-scale modeling are required if we are to refine our modeling to

accurately predict tumor morphology, motility, and other fine-scale details in

patient-specific simulated tissues, as well as to understand a tumor’s heteroge-

neous response to therapy. Indeed, this is the essence of multiscale modeling: to

properly incorporate an increasing amount of data from various modeling scales

to improve the predictivity of the modeling framework.

Clinical implications

The fact that ten of the twelve index cases could be accurately predicted using

steady-state theory suggests that DCIS emerges quickly from an undetectable

precursor state (e.g., ADH) betweeen annual mammograms. Indeed, in an explo-

ration of the time to reach steady state, we noted that DCIS tumors reach 95%

of their maximum size within three months of initiation for a physiological range

of values of A, f and L0 (results not shown). We therefore expect that 85%

of DCIS should be at steady state for women undergoing yearly mammograms.

For a sample size of 12, we should therefore expect one-to-two (on average: 1.8)

cases to be smaller than the steady state predictions, fully consistent with the

two overestimated cases above (denoted by ‘-’ in column 8 of Table 10.5 above).

This has clear clinical implications. Given the relatively fast time scale of

DCIS progression, at-risk populations (e.g., families with BRCA1 or BRCA2

mutations) may require more frequent surveillance than annual mammograms

to adequately detect and treat breast cancer before it progresses to invasion.

Indeed, an estimated 75% of all DCIS cases are already invasive at the time

of detection [399, 348, 25]. Alternatively, low-dose chemotherapeutics could be

prescribed for such high-risk groups to slow (undetected) DCIS progression to

allow for adequate detection by annual mammograms.

Given the fast progression of DCIS to a steady state and the prevalence of

hypoxia and necrosis when large or densely-packed ducts are involved, we see

that tumor cells may be subject to hypoxic stress for substantial periods of

time prior to detection by annual mammogram. This is consistent with the

prevalence of co-existent invasive carcinoma in newly-detected DCIS cases [399].

Our simulations show that the extent of necrosis can be predicted by identifying

regions of severe hypoxia. Based upon our simulations, necrosis occurs primarily

in larger ducts with densely packed DCIS. Thus, the tumor’s physical location,

kinetic rates of proliferation and apoptosis, and local cell density are determinant

predictors of extent of necrosis. Given that the peri-necrotic rim of a tumor

represents the cell population that is at greatest risk for evolution to invasion,

these measureable quantities could be better predictors of which DCIS cases are

more likely to become invasive than grade or necrosis is today.

Our results also suggest new possible correlates for compromised margins (a

predictor of tumor recurrence) and DCIS behavior. Several groups have studied
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the relationship between the frequency with which residual DCIS is found in

a re-excision and the margin status of the previous excision. For example, in a

study of core biopsy predictors of compromised margins, [179] found that surface

area involvement of cores by DCIS, solid type, high grade, presence of necrosis,

and presence of calcifications all correlated with compromised margins in uni-

variate analysis; surface area involvement persisted in multivariate analysis. This

is consistent with our model’s primary inputs: AI and PI correlate with grade,

f is determined by the surface area DCIS density (and increases with solid-

type DCIS). Furthermore, necrosis and calcification increase with hypoxia in our

model, which scales roughly with tumor size and likelihood of invasion. Thus

the morphological characteristics that [179] correlates with compromised margin

are histological surrogates for parameter inputs in our mechanistic model; con-

versely, our mechanistic model should be able to use these quantifiable physical

measurements to more specifically and accurately predict compromised margins.

Thus, the model provides a mechanistic explanation for many of the morpholog-

ical correlates that have been used to predict clinical outcomes in DCIS.

Similarly, high grade DCIS (especially solid-type) and DCIS with comedo-

type necrosis are both considered to be correlates of higher risk for subsequent

invasion. From the model we conclude that involvement of larger ducts, lower

values of A, and more dense microarchitecture will result in more necrosis,

and hence should correspond to higher risk of hypoxic stress and pro-invasion

mutations. The interaction of physical location, growth and apoptosis rates, and

local cell density are more specific predictors of extent of hypoxia and necrosis

than the gross and morphologic parameters in typical use (grade, subtype, and

comedonecrosis). Loss of p53 activity has also been suggested as a contributor to

invasive potential in high grade DCIS (see e.g. [472]). Such loss would decrease

native rates of apoptosis and decrease A. For high grade DCIS with its higher

range of PI, the decrease in A could be even more significant, leading to rapid

tumor growth and the evolution of extensive hypoxic stress zones. Thus, a

decrease in A and the generation of more hypoxic stress could be a mechanism

by which loss of p53 activity contributes to invasive potential in high grade DCIS.

Long-term vision: a surgical planning tool

In the longer term, a computational model of DCIS built upon these results

could lead to better predictions of the tumor volume extent prior to treatment,

thus providing a clinical tool to assist in (a) determining when a mastectomy

is the preferred treatment over breast conserving surgery, (b) predicting an

adequate tumor excision volume and geometry for breast conserving surgery, and

(c) defining an optimal zone for radiation therapy. We have already demonstrated

good predictive capability of the tumor volume; if we can additionally correlate

mammographic or other imaging data to the tumor morphology (or predict it

in near-real time based upon simulating growth in the duct system), we could

overlay the predicted tumor morphology on real-time imaging during surgery.
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Figure 10.9 Comparison of mammography-based (innermost labeled volume),
pathology-measured (intermediate volume labeled “histopathology”), and model-
predicted (largest labeled volume) excision volumes. The model-predicted excision
region uses the pathology-measured shape as a proof of concept. Reprinted from the
submission [196].

In Figure 10.9, we show a mock-up of what such a tool might look like. Using

the shape defined by the post-mastectomy pathology specimen as a proof of

concept, along with the current volume prediction from Section 10.4.3, we show

how a simulation result could be overlaid on medical imagery to plan a surgical

excision. If the pathology-based shape estimate could be replaced by either a

more detailed simulation geometry or better pre-surgical shape measurements,

the such software (mock-up shown as largest labeled volume) could predict much

more precise surgical margins than current mammographic measurements (inner-

most labeled volume), potentially allowing the patient to avoid re-excision.

In comparison, the volume predicted from measuring distances between calci-

fications in the mammogram is known to be inadequate (see e.g. [296]). While

the model alone currently does not predict the tumor shape, this information

could be obtained in near-real time using an imaging modality such as MRI.

Thus, using the tumor shape defined by MRI, along with immunohistochemical
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and histological inputs from the core biopsy, the model could be used to visualize

the volume requiring resection rather than having to rely on viewing 2-D images

of any kind (see e.g. [399]).

10.5 Concluding remarks

In this chapter, we adapted the agent-based model presented in Chapter 6 to

ductal carcinoma in situ of the breast. After developing and testing a patient-

specific calibration protocol, we surveyed several applications to test the model’s

predictive power.

We began by using the model to help estimate difficult biophysical parameters

pertaining to cell death. By applying a volume-averaged version of the model

to histopathologic data from normal breast epithelium, we were able to estimate

the time duration of apoptosis at around 8.6 hours; this parameter can be dif-

ficult to observe experimentally. Furthermore, we arrived at the same estimate

when using data from both pre- and post-menopausal women, thereby support-

ing the biological hypothesis that cancerous and non-cancerous cells use the same

physical mechanisms (in this case apoptosis and proliferation), only with altered

frequency. We applied a numerical implementation of the model to conduct a

parameter study on the time duration of cell calcification, arriving at an esti-

mate of approximately 15 days. Currently, cell calcification is difficult to study

in vitro, and only limited, indirectly-available data exist for calcification in vivo.

We next examined the ability of the model to make testable predictions on cell

biology. The model predicted a Michaelis-Menten-type response of cell prolifer-

ation to oxygen availability; subsequent analysis of patient immunohistochem-

istry verified the prediction with excellent quantitative agreement. However,

this agreement came with an important caveat: the precise relationship between

proliferation and oxygen availability can vary substantially across a single tumor

even for fixed times–pointing to genetic and proteomic variation across a patient’s

tumor, such as in the E-cadherin/β-catenin signaling pathway.

Lastly, we conducted a preliminary study on the ability of the agent model to

calibrate continuum-scale models (by upscaling) for patient-specific predictions

of breast tumor volume. We found that the agent model, as part of a larger

multiscale modeling framework, had success in predicting patient-specific tumor

sizes in a small group of index cases. This success points to the multiscale model’s

potential as a tool that could be used in conjunction with an imaging modal-

ity to construct a volume around tumor axes and midpoints in MR and other

imagery. This would help surgeons and pathologists to visualize DCIS tumors

during surgery. We see the model as an important first step in understanding

the physical changes that result from molecular alterations and contribute to the

development of invasive breast cancer.
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REFERENCES 257

[149] V. Cristini, X. Li, J. Lowengrub, and S. Wise. Nonlinear simulations of solid tumor

growth using a mixture model: invasion and branching. J. Math. Biol., 58(4-5):723–

763, 2009.

[150] V. Cristini and J. Lowengrub. Three-dimensional crystal growth. i. linear analysis and

self-similar evolution. J. Crystal Growth, 240:267–276, 2002.

[151] V. Cristini, J. Lowengrub, and Q. Nie. Nonlinear simulation of tumor growth. J. Math.

Biol., 46:191–224, 2003.

[152] S. Cui. Analysis of a mathematical model for the growth of tumors under the action of

external inhibitors. J. Math. Biol., 44:395–426, 2002.

[153] S. Cui. Analysis of a free boundary problem modeling tumor growth. Acta Math. Sinica,

21:1071–1082, 2005.

[154] S. Cui. Well-posedness of a multidimensional free boundary problem modelling the

growth of nonnecrotic tumors. J. Func. Analysis, 245:1–18, 2007.

[155] S. Cui. Lie group action and stability analysis of stationary solutions for a free boundary

problem modelling tumor growth. J. Diff. Eq., 246(5):1845–1882, 2009.

[156] S. Cui and J. Escher. Asymptotic behaviour of solutions of a multidimensional moving

boundary problem modeling tumor growth. Comm. Partial Diff. Equations, 33:636–

655, 2008.

[157] S. Cui and J. Escher. Well-posedness and stability of a multi-dimensional tumor growth

model. Arch. Rat. Mech. Analysis, 191:173–193, 2009.

[158] S. Cui and A. Friedman. Analysis of a mathematical model of the effect of inhibitors

on the growth of tumors. Math. Biosci., 164:103–137, 2000.

[159] S. Cui and A. Friedman. A free boundary problem for a singular system of differen-

tial equations: An application to a model of tumor growth. Trans. Amer. Math. Soc.,

255:3537–3590, 2003.

[160] S. Cui and A. Friedman. Formation of necrotic cores in the growth of tumors: analytic

results. Acta Matematica Scientia, 26:781–796, 2006.

[161] S. Cui and X. Wei. Global existence for a parabolic-hyperbolic free boundary problem

modelling tumor growth. Acta Math. Appl. Sinica, 21:597–614, 2005.

[162] S. Cui and S. Xu. Analysis of mathematical models for the growth of tumors with time

delays in cell proliferation. J. Math. Analysis Appl., 336:523–541, 2007.

[163] J. Dallon and H. Othmer. How cellular movement determines the collective force gen-

erated by the dictyostelium discoideum slug. J. Theor. Biol., 231:299–306, 2004.

[164] C. G. Danes, S. L. Wyszomierski, J. Lu, C. L. Neal, W. Yang, and D. Yu. 14-3-3ζ

down-regulates p53 in mammary epithelial cells and confers luminal filling. Canc. Res.,

68:1760–7, 2008.

[165] K. Date, K. Matsumoto, K. Kuba, H. Shimura, M. Tanaka, and T. Nakamura. Inhibition

of tumor growth and invasion by a four-kringle antagonist (hgf/nk4) for hepatocyte

growth factor. Oncogene, 17:3045–3054, 1998.

[166] C. R. De Potter, I. Eeckhout, A.-M. Schelfhout, M.-L. Geerts, and H. J. Roelsh. Ker-

atinocyte induced chemotaxis in the pathogenesis of Paget’s disease of the breast.

Histopath., 24(4):349–56, 1994.

[167] J. Debnath and J. Brugge. Modelling glandular epithelial cancers in three-dimensional

cultures. Nature Rev. Cancer, 5:675–688, 2005.

[168] J. Debnath, K. Mills, N. Collins, M. Reginato, S. Muthuswarmy, and J. Brugge. The role

of apoptosis in creating and maintaining luminal space within normal and oncogene-

expressing mammary acini. Cell, 111:29–40, 2002.



258 REFERENCES

[169] T. Deisboeck, M. Berens, A. Kansal, S. Torquato, A. Stemmer-Rachamimov, and

E. Chiocca. Pattern of self-organization in tumour systems: Complex growth dynamics

in a novel brain tumour spherical model. Cell Proliferation, 34:115–134, 2001.

[170] T. Deisboeck, L. Zhang, J. Yoon, and J. Costa. In silico cancer modeling: is it ready

for prime time? Nature Clin. Practice Oncol., 6(1):34–42, 2009.

[171] K. DeJaeger, M. Kavanagh, and R. Hill. Relationship of hypoxia to metastatic ability

in rodent tumors. Br. J. Cancer, 84:1280–1285, 2001.

[172] H. D. Dell. Milestone 1 (1889) Seed and soil hypothesis: Obser-

vations from a ploughman. Nat. Rev. Cancer, 6:S7, 1989.

http://www.nature.com/milestones/milecancer/index.html.

[173] R. Demicheli, G. Pratesi, and R. Foroni. The exponential-gompertzian growth model

: data from six tumor cell lines in vitro and in vivo. estimate of the transition point

from exponential to gompertzian growth and potential clinical applications. Tumori,

77:189–195, 1991.

[174] B. Desai, T. Ma, and M. A. Chellaiah. Invadopodia and matrix degradation, a new

property of prostate cancer cells during migration and invasion. J. Biol. Chem.,

283(20):13856–66, 2008.

[175] A. Deutsch and S. Dormann. Cellular automaton modeling of biological pattern forma-
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