
2 Biological background1

With P. Macklin

In this chapter, we present some of the key biological concepts necessary to

motivate, develop, and understand the tumor models introduced in this book. We

introduce the molecular and cellular biology of noncancerous tissue (Section 2.1)

and then discuss how this biology is altered during cancer progression (Section

2.2). The discussion may in some areas be more detailed than is necessary for

the models that we present; the intent is to offer a sampling of the rich world

of molecular and cellular biology, helping the reader to consider how these and

details may need to be incorporated in the work of cancer modeling. For greater

depth on any of the topics, please refer to such excellent texts as [12] for molecular

and cellular biology, as well as [386] for cancer cell biology.

2.1 Key molecular and cellular biology

We focus upon the molecular and cellular biology of epithelial cells, the stroma,

and the mesenchymal cells that create and maintain the stroma (Section 2.1.1).

Specific and often anisotropic adhesive forces help to maintain tissue architec-

ture (Section 2.1.2). Epithelial and stromal cells have the same basic subcellular

structure (Section 2.1.3) and share much in common. They progress through a

cell cycle when preparing to divide, can control their entry into and exit from

the cycle, and can self-terminate (apoptose) when they detect irreparable DNA

errors or other damage (Section 2.1.4). Their behavior is governed by a signaling

network that integrates genetic and proteomic information with extracellular

signals received through membrane-bound receptors (Section 2.1.5). Sometimes,

cells respond to signaling events by moving within the stroma or along the base-

ment membrane (Section 2.1.6). In pathologic conditions leading to hypoxia,

cells can respond through a variety of mechanisms, or can succumb to necrosis;

in some cases, necrotic cellular debris is calcified (Section 2.1.7).

1 This introduction to cancer biology updates and expands the original exposition in [433].
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2.1.1 Tissue microarchitecture and maintenance

Epithelium is composed of sheets of tightly-adhered epithelial cells that cover

organ surfaces and often perform specialized functions. The epithelium is sup-

ported by the stroma, a loose connective tissue. The main component of the

stroma is the extracellular matrix (ECM), a scaffolding of fibers (collagen, elastin,

fibronectin, etc.) embedded in a mixture of water and glycoproteins. The ECM

is secreted and maintained by stromal cells, specialized mesenchymal cells that

can freely move within the stroma as they maintain the tissue; fibroblasts are the

primary stromal cells in loose connective tissue (epithelial stroma). The stroma

is interlaced by blood vessels, nerves, and lymphatic vessels, and it may rest

on an additional layer of muscle or bone, depending upon the location. A thin,

semi-permeable basement membrane (BM: a specialized type of ECM) separates

the epithelium from the stroma. See Figure 2.1.

Figure 2.1 Typical tissue structure showing epithelium separated from the stroma by a
basement membrane.

This complex tissue structure is maintained by careful regulation of the cell

population and a specific balance of adhesive forces. These processes are often

tied together through cell signaling. For further information on tissue and organ

structure, please see [220], [12], and the references therein.

Population dynamics:

Each cell type population must be regulated by balancing proliferation and apop-

tosis. When a differentiated cell dies, a somatic stem cell may divide either sym-

metrically into two new stem cells or asymmetrically into a stem cell and a

progenitor cell. The progenitor cell either further divides or terminally differen-

tiates into the desired cell type, migrates or is pushed to the correct position, and

assumes its function. This process is tightly regulated by intercellular communi-

cation via biochemical signals (growth factors) and mechanics; stromal cells help

maintain this signaling environment [425, 496, 728]. Each cell’s response to the

microenvironment is governed by surface receptors that interact with an inter-

nal signaling network. We note that stem cell dynamics are not fully understood;

please see the excellent overviews in [73, 728].
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Epithelial cell polarity and adhesion:

Epithelium can be broadly classified as simple or stratified based upon its cell

arrangement. In simple epithelium, cells are arranged in a single layer along the

basement membrane. The cells are polarized, with a well-defined base adhering to

the BM and an apex exposed to the lumen (e.g., a cavity in an organ); the apical

side of the cell is often used to release secretory products. The epithelial cells

adhere tightly to one another along their non-apical, non-basal sides. See Figure

2.2: left. In stratified epithelium, a single cell layer adheres to the BM (similarly

to simple epithelium), with additional layers above. The cells in the upper layers

adhere to the layers above and below them and tend to be flattened. See Figure

2.2: right. Overall, the careful orchestration of cell-BM and cell-cell adhesion

helps determine the tissue geometry [352, 303, 688]. In fact, heterogeneities in

the balance of cell-cell and cell-BM adhesion can lead to epithelium invagination

[402], folding [675], and other nontrivial geometries [636]. The molecular mech-

anisms of adhesion are further explored in Section 2.1.2. More information on

epithelial cell polarization can be found in standard biology texts, such as [12].

Figure 2.2 Simple (left) and stratified (right) cuboidal epithelium.

Interaction between cell adhesion and population dynamics:

Cell adhesion and population dynamics are, in fact, linked to one another. Epithe-

lial cell cycle progression and proliferation are controlled in part by cell-cell adhe-

sion: when an epithelial cell is in (adhesive) contact with many neighbors, its cell

cycle and proliferation are suppressed. This helps to maintain the epithelial cell

population by reducing proliferation when the epithelium is fully populated, and

by increasing proliferation near gaps in the epithelium (e.g., due to apoptosis)

[144, 303, 688]. Hence, cell-cell contact-dependent proliferation helps prevent

overproliferation. This theme is further discussed in Section 2.1.5.

Cell populations are also controlled by contact with the extracellular matrix

and basement membrane. Polarized epithelial cells often become apoptotic after

losing adhesive contact with the BM [246, 332, 278, 643, 680]; this specialized



Biological background 11

type of apoptosis, termed anoikis, helps prevent overproliferation of unattached

cells into the lumen [164]. The ECM also plays a major role in regulating stromal

cells [278]. For example, ECM-bound proteoglycans control the proliferation,

differentiation, and apoptosis of bone marrow stromal cells [70], and integrin

ligands in the ECM regulate endometrial stromal cells [601].

2.1.2 Cellular adhesion and cell sorting

Adhesion is essential to multicellular arrangement and motility: cell-cell, cell-

ECM, and cell-BM adhesion are responsible for maintaining the tissue arrange-

ment, while cell-BM and cell-ECM are essential for traction during motility.

Adhesion

Cells can exhibit both homophilic and heterophilic adhesion. In homophilic

adhesion, adhesion receptor molecules on the cell surface bond to identical ligands

(a receptor’s “target” molecules) on neighboring cells (in cell-cell adhesion) or

in the microenvironment (in cell-ECM or cell-BM adhesion). This is the mode

of E-cadherin-mediated cell-cell adhesion in epithelial cells, including carcinoma

[524]. In heterophilic adhesion, surface adhesion molecules of one type bond to

unlike ligand molecules in the extracellular matrix, on the basement membrane,

or on neighboring cells. Cell-ECM and cell-BM adhesion are heterophilic between

integrin molecules on the cell surface and ligands such as laminin and fibronectin

in the microenvironment [92]. Heterophilic cell-cell adhesion is also observed,

such as in T-cell lymphocytes via immunoglobulin-integrin bonds [633, 657, 429].

Cell adhesion and cell sorting

While epithelial cell-cell adhesion is generally homophilic and mediated by

E-cadherin, other cadherins complicate the picture. For example, E-cadherin

binds with greatest strength and specificity to E-cadherin, but can also bind

to N-cadherin [524] and certain integrins [363]. Hence, the mixture of adhesion

molecules on two cells’ surfaces (and the specificity and kinetics of the bonds

between the molecules) will determine the stength of their adhesion. Adhesive

differences between cell types can lead to self-sorting behavior based upon adhe-

sion gradients, which contributes to epithelial cell organization in tissues [554].

Such cell sorting has been observed experimentally [43].

2.1.3 Subcellular structure

A cell is composed of a well-defined nucleus containing its DNA, surrounded

by cytosol (the liquid in the cell) and enveloped in a bilipid cell membrane.

The cytoplasm contains organelles that carry out the cell’s functions, such as

the mitochondria (which synthesize adenosine triphosphate (ATP) from glucose

and oxygen to provide energy to the cell) and endoplasmic reticulum (which

provides ideal conditions for protein synthesis, folding, and transport), all sup-
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Figure 2.3 Diagram of a eukaryotic cell: A bilipid cell membrane contains the
cytosol, nucleus, and organelles, all supported by a cytoskeleton. inset: Membrane-
embedded receptors transmit microenvironmental information to the cell interior.

ported by a cytoskeleton of microtubules and actin polymer fibers. See Figure

2.3. The bilipid membrane separates the cell from the microenvironment. It is

permeable to passive diffusion of small molecular species such as oxygen and

glucose, actively pumps other molecular species (e.g., potassium and sodium) to

maintain the cell’s internal pH and chemical composition, and is impermeable to

other, larger molecules such as growth factors. Embedded in the membrane are a

variety of macromolecules that pump smaller molecules (e.g., potassium) against

gradients; exchange mechanical forces with the extracellular matrix, basement

membrane, and other cells; and transmit microenvironmental information to the

cell interior.

2.1.4 Cell cycle, proliferation, and apoptosis

Cell division is regulated by a highly regimented series of stages known as the

cell cycle. In the first stage in the cell cycle, G1 (gap 1), the cell physically grows,

proteins are synthesized, new organelles are constructed, and the cell prepares

for DNA replication. In the following S (synthesis) phase, the DNA is copied, and

in the G2 (gap 2) phase, final preparations are made within the cell nucleus for

the division of the cell. In the final M (mitosis) phase, the two copies of the DNA

are separated and incorporated into two nuclei (mitosis), and the cytoplasm and

the organelles are divided into two daughter cells (cytokinesis). See Figure 2.4.
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Figure 2.4 The cell cycle.

The cell cycle contains numerous checkpoints that allow the cell to check for

and repair DNA damage, as well as to control or halt cycle progression. At the R

(restriction) checkpoint late in the G1 phase, the cell either commits to division

(and progresses to the S phase) or exits the cell cycle (and enters the G0 quiescent

state) [720, 72]. Most noncancerous somatic cells stay in this “resting” state due

to microenvironmental signals received prior to the R checkpoint, maintaining

homeostasis; after the R checkpoint, cells are committed to division and are less

responsive to environmental signals to halt the cycle [609].

There are numerous checkpoints in the S and G2 phases to detect and repair

DNA damage (e.g., between G2 and M). See Figure 2.4. Cells that fail to repair

DNA damage at such checkpoints induce apoptosis [140]. In the process, “execu-

tioner” proteins (Caspases) in the cytoplasm break down the organelles, degrade

the cytoskeleton, and fragment the DNA. The cell shrinks, and the degraded

cell contents are released as harmless (i.e., chemically inert) vesicles known as

apoptotic bodies, which are ingested (phagocytosed) by specialized immune cells

as well as neighboring epithelial cells [371, 391].

A cell’s speed cell cycle progression is regulated by the production and bal-

ance of internal chemical signals, principally cyclins and cyclin-dependent kinases

(CDKs). Surface receptors help control gene expression levels through complex

signaling pathways. The gene expression pattern, in turn, determines the pro-

duction and balance of proteins (including cyclins and CDKs). Hence, cell cycle

progression is regulated by a complex interaction between the cell’s internal

biomachinery and its surrounding environment [140].

2.1.5 Genetics, gene expression, and cell signaling

Oncogenes and tumor suppressor genes

The correct interpretation of growth and inhibitory signals is key to maintaining

healthy tissues. If the cell receives both growth-promoting and -inhibiting signals,

its behavior is determined by the balance of the signals and the resulting gene

expression pattern. Two types of genes are particularly relevant to regulating cell
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proliferation. Oncogenes respond to or create growth signals and promote cell

cycle progression. Tumor suppressor genes (TSGs) respond to inhibitory signals,

retard or halt the cell cycle, ensure proper DNA repair, and may trigger apoptosis

under certain circumstances. Cancer initiation, or carcinogenesis, starts with the

malfunction of one or more of these types of genes [302].

Genetic mutations can cause overactivity in oncogenes and impair the function

of tumor suppressor genes. Sometimes, a single uncorrected point mutation is

sufficient to affect the function of an oncogene [451] or functionally neutralize

a tumor suppressor gene [325]. In other cases, cell division errors (e.g., during

M phase) can create a mutant fusion oncogene, where the protein coding por-

tion of an oncogene is mistakenly fused with the triggering portion of another,

frequently expressed gene. As a result, signals are “misrouted” to the oncogene,

thus boosting its activity. See [396], which describes the activation of the MYC

oncogene by translocation with an immunoglobulin gene.

Other errors during cell division may cause a daughter cell to mistakenly

receive extra copies of an oncogene (e.g., [111, 119, 217]) or too few copies of

a TSG. Because normal cells possess two copies of each tumor suppressor gene,

both copies must be damaged for a total loss of function of the gene. (See the

Knudson two-hit model [388, 389], which led to the first discovered TSG [245].)

While the probability of independent mutations in both copies of the TSG is ordi-

narily small, loss of heterozygosity (two damaged copies of the TSG are passed

to a daughter cell) can significantly accelerate the process [503]. Furthermore,

the loss of just one TSG copy can significantly impair its activity and increase

the probability of completing a multi-step carcinogenesis pathway [558].

Changes in gene expression

Gene expression is essential to maintaining proper cell function. Recent research

has examined the over- and underexpression of genes, rather than outright

genetic damage, as a potential contributor to unchecked cell proliferation.

Viral infections (e.g., human papillomavirus can induce cervical cancer [695])

and microenvironmental signals (e.g., hypoxia; see Section 2.1.5 and references

therein) can also induce changes in gene expression. Because gene expression

patterns can be heritable, such changes can potentially affect a cell’s malig-

nant transformation (e.g., by disabling a tumor suppressor gene) in the same

way as a genetic mutation [356]. Lastly, we note that the biochemistry of gene

expression is very complicated and is beyond the scope of this introduction; see

[357, 356, 425, 191] for more on this topic.

Cell signaling networks

Gene expression is controlled by cell surface receptors after activation by various

signaling factors. Internal chemical species (e.g., oxygen) can also affect gene

expression. The cell integrates such information with its genetic and proteomic

state using a complex signaling network to determine its phenotype. Aberrant
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Figure 2.5 Simplified EGFR Signaling: Dimerized EGFR can transmit signals
through a variety of molecular pathways that trigger proliferation, motility, and
increased resistance to apoptosis

cell signaling is often implicated in cancer, making it a key topic to molecular

and cellular cancer biology. We illustrate with a few examples:

Example: HIF-1α signaling:
A cell’s response to hypoxia (low oxygen levels) is a key example of how internal

protein levels can affect gene expression without need for additional receptor

signaling. All cells create HIF-1α (a hypoxia-inducible factor) that is ordinarily

degraded in the presence of oxygen [87, 602, 247, 289]. When a cell experi-

ences hypoxia, HIF-1α accumulates and activates downstream “target” genes.

Among targets of importance to cancer biology, HIF-1α upregulates motility,

secretion of angiogenic-promoting factors, and anaerobic glycolysis (an ineffi-

cient metabolism attained by reacting glucose with glucose, rather than oxy-

gen); downregulates cell-cell and cell-ECM adhesion; and reduces sensitivity to

apoptotic signals [305, 716, 13, 543]. We discuss the significance of this signaling

pathway in cancer biology in Sections 2.1.7 and 2.2.2.

Example: EGF signaling:
Epidermal growth factor (EGF) can bind to and subsequently activate EGF

receptors (EGFR). When two activated EGFRs bind to one another (dimerize),

they can transmit signals leading to increased HIF-1α secretion, increased cell

proliferation, increased cell motility, and reduced sensitivity to apoptosis. See
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Figure 2.5 and the excellent reviews in [314, 505, 134]. Malfunctions in this signal-

ing process have been implicated in several cancers. For example, a mutant form

of EGFR (HER2) commonly found in breast cancer is constitutively (i.e., perma-

nently) active and does not require EGF binding for signaling activity; moreover,

HER2 can bind to activated EGFR to provide a “shortcut” in the EGFR signal-

ing cascade and thus increase EGFR signaling activity [192, 134]. In non-small

cell lung carcinoma (NSCLC), downstream targets of EGFR are often mutated,

most notably a constitutively-active form of K-ras that can function indepen-

dently of upstream EGFR signals. Indeed, NSCLC with K-ras mutations are

generally resistant to therapies that target EGFR [193, 525]. Both these muta-

tions effectively activate downstream targets of EGFR independent of receptor

activity; i.e., the EGFR pathway switch is “stuck in the ON position,” leading

to excessive proliferation and other cancer-promoting activity.

Example: E-Cadherin/β-Catenin signaling:
Some receptors have multiple, simultaneous roles. E-cadherin mediates

homophilic epithelial cell-cell adhesion (Section 2.1.2). The intracellular domain

of E-cadherin binds to α-catenin (using β-catenin as an adapter protein) to

mechanically couple an adhered cell to its actin cytoskeleton [387, 189]. Ligated

E-cadherin also binds to β-catenin, which sequesters it at the cell membrane

and prevents its downstream signaling. Unsequestered β-catenin would other-

wise promote cell cycle progression by triggering transcription of Cyclin D1,

c-myc, and Axin2. Hence, E-cadherin not only plays a mechanical role in cell-

cell interactions, but also a signaling role by inhibiting cell cycle progression

when physically adhered to epithelial cells [71, 600, 430, 315]. This signaling

pathway plays a key role in maintaining normal epithelial tissue microarchi-

tecture [144, 303, 688]; see Section 2.1.1. In many cancers (e.g., breast cancer

[419]), the E-cadherin/β-catenin signaling pathway can be disrupted, leading to

increased downstream oncogenic activity (e.g., increased cell cycle progression

due to Cyclin D1 overexpression [464]).

2.1.6 Cell motility

Motile cells demonstrate directed motion by a complex interaction between cell

signaling, their cytoskeleton, and adhesion with the ECM or BM. We describe

here the key aspects of this process; more detail can be found in [145, 280, 405].

Gradients in microenvironmental signaling molecules (e.g., EGF) can be ampli-

fied by the multiple steps in signaling networks, leading to pronounced interal

signaling gradients [379]. A key downstream effect of motility signaling is actin

polymerization (the formation of linked chains of actin monomer that extend

the actin cytoskeleton) and depolymerization (the spontaneous degradation of

actin polymers). This process takes place within a thin region just below the cell

membrane [359, 405]. Wherever polymerization exceeds depolymerization, there

is net outward growth of the cell’s cytoskeleton, which, in turn, deforms and
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extends the cell membrane. If net actin polymerization continues in a consistent

direction, the cell forms a pseudopod (i.e., a “false foot”) that extends from its

leading edge into the microenvironment. Net actin depolymerization at the cell’s

trailing edge, along with internal microtubule activity, leads to cell contraction

[145, 280, 405]. The signaling network creates and maintains this bias in actin

polymerization. For example, dimerized EGFR can activate Src, which, in turn,

can mediate the formation of Arp2/3-N-WASP complexes that nucleate actin

polymerization; microenvironmental EGF gradients thus create internal poly-

merization gradients towards the cell’s leading edge [596, 145, 481, 692, 691].

Cell motility requires mechanical interaction between cell membrane pro-

trusions and the microenvironment. Individual cells may move through the

stroma (in 3D) in an amoeboid motion by squeezing between ECM fibers (e.g.,

T-lymphocyte migration [703]) or by extending a slender, finger-like pseudo-

pod (a filopodium) that forms focal adhesions with the ECM to exert trac-

tion [405]. The latter, which occurs during cancer cell invasion of the stroma

[235, 702], requires directed, coordinated degradation of the ECM to create space

for motion, and is accomplished by forming tiny invadopodia on the filopodium

surface that secrete proteases to degrade the ECM [367, 174, 687]. In other cases,

cells may move along a surface by extending a sheet-like pseudopod (a lamel-

lipodium) that focally adheres to the surface for traction [405]. This has been

observed in Paget’s disease of the breast (cancerous epithelial cells chemotax

along the breast duct basement membrane towards the nipple [78]), wound heal-

ing (keratinocytes crawl along the top of granular tissue [403]), and fibrosarcoma

metastasis (cancer cells crawl along lymph vessel walls [712]). Following mem-

brane protrusion, non-amoeboid motility requires the release of integrin bonds

along the cell’s trailing edge and subsequent cell contraction, allowing net forward

motion [405]. Directed cell motility also requires active intracellular transport of

actin monomer [689], integrins [280], and other cytoskeletal components between

the cell’s trailing and leading edges [405].

2.1.7 Hypoxia, necrosis, and calcification

In Section 2.1.5, we discussed some of the cellular adaptations to hypoxia. Sus-

tained hypoxia (as well as sustained hypoglycemia), such as that encountered in

ischemic tissue [385, 252, 583] and in larger tumors [114, 214], can lead to ATP

depletion and consequently cell death. This unplanned cell death is referred to

as necrosis.

When a cell becomes necrotic, its surface ion pumps cease to function, resulting

in osmosis of water into the cell, cell swelling, and subsequent bursting [51]. This

differs from apoptosis, where the volume loss is orderly and the intracellular

contents are contained in apoptotic bodies [51]. In necrotic cells, the remaining

solid cell fraction is generally not phagocytosed by surrounding cells, as they

themselves are typically also necrotic. In some cancers (e.g., breast cancer [641],

liver cancer [310], ovarian cancer [631], and lymphoma [336, 137]) and other
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pathologic conditions (e.g., tuberculosis [54] and abscesses [398, 701]), necrotic

tissue can undergo calcification: the solid cell components are replaced by calcium

phosphate and/or calcium oxalate molecules that bond together to form calcite

crystals that grow into hard microcalcifications [446].

2.2 The biology of cancer

Most simply stated, cancer occurs when defective genes cause cells to malfunc-

tion and interact with the body in an aberrant, hyperproliferative manner (either

by increased cell proliferation or reduced cell apoptosis). We now examine how

the molecular and cellular biology previously introduced in Section 2.1 can break

down, leading to cancer. Our discussion primarily focuses upon carcinoma (can-

cers arising from epithelial cells) rather than sarcoma (cancers arising from mes-

enchymal cells).

2.2.1 Carcinogenesis

Figure 2.6 Left: Initial avascular tumor. Right: Substrate gradients lead to hypoxia
and central necrosis

Carcinogenesis is a multistage process thought to begin with a genetic muta-

tion or epigenetic alteration that overexpresses an oncogene or underexpresses a

tumor supressor gene in one or a small number of cells. If the cell survives and

the mutation escapes its DNA repair mechanisms, the cell (or its descendants)

may over time acquire further mutations to ignore growth-inhibiting signals from

its neighbors, bypass its internal controls and checkpoints, and form a colony of

hyperproliferative, aberrant cells. This accumulation of mutations may require

years to progress, but can be accelerated by exposure to carcinogens and other

harsh, DNA-damaging environmental effects.

Differentiated cells can only divide a limited number of times before reaching

senescence: the point at which they permanently arrest in G0 or apoptose. Thus,
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differentiated cells alone cannot drive unlimited tumor growth without additional

mutations to overcome senescence. Recent studies suggest that cancer may arise

from mutated somatic stem cells rather than differentiated cells [58, 425, 608].

In this scenario, the tumor is a mixed cell population whose overgrowth is driven

by a small sub-population of cancer stem cells, rather than by differentiated cells

that have overcome senesence. With or without cancer stem cells, the result is

the same at the multicell and tissue scales: a mass of hyperproliferative cells that

fail to respond to ordinary physiologic limits to their growth (Figure 2.6: left).

2.2.2 Avascular solid tumor growth

Once a tumor has established a foothold in its host tissue, it begins an early

period of growth as it becomes an in situ cancer. Epithelial cells are generally

constrained by the basement membrane.

The limiting role of oxygen and nutrient diffusion, hypoxia, and necrosis

In this early stage of cancer, the tumor has no vascular system of its own,

and so it must rely upon the host vasculature in the nearby stroma for cru-

cial oxygen, nutrients, and growth factors; we refer to these generically as “sub-

strates.” Substrates diffuse from the surrounding vascularized tissue, enter the

tumor, and are uptaken by proliferating tumor cells. This motion of substrates

from external sources (the host vasculature) to internal sinks (the metaboli-

cally active tumor cells) causes substrate gradients to form within the tumor.

Of particular importance is oxygen, which generally diffuses on the order of 100-

200 µm into tissue before dropping to levels insufficient for cellular metabolism

[114, 151, 214, 437, 439]. Interior tumor cells experience hypoxia and respond

to their harsher microenvironment in a variety of ways (Section 2.1.5). Deeper

within the tumor, oxygen and glucose levels drop to critcally low levels that cause

the tumor cells to necrose. These dynamics are manifested as an outer tumor

viable rim of proliferating cells, an interior band of hypoxic cells, and a central

necrotic core. See Figure 2.6: right.

This affects the tumor mechanically. Prior to the formation of a necrotic core,

proliferation throughout the tumor causes a net outward cell flux that expands

the tumor (Figure 2.7: left). Simultaneously, the proliferating tumor cells absorb

fluid from the interstitium to fuel their growth and eventual division, resulting

in a net fluid flux into the tumor. Once a necrotic core has formed, cell lysis

reduces the tumor cell volume and releases fluid that leaves the necrotic core and

enters the proliferative rim interstitium. The subsequent reduction in mechanical

pressure in the necrotic core redirects some of the viable rim cell flux towards

the tumor interior (Figure 2.7: middle). As the tumor grows, the volume of its

necrotic core increases, thus accentuating its cell volume sink effect. Once the

tumor grows large enough, the cell flux resulting from proliferation balances with

the fluid flux stemming from necrosis, leading to zero outward cell flux. This gives

rise to a steady-state tumor spheroid (Figure 2.7: right).
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Figure 2.7 Cell and fluid flux in early (left), later (middle), and long-time (right)
tumor growth.

2.2.3 Interaction with the microenvironment

As the nascent tumor grows in its host tissue, it interacts with the surrounding

microenvironment in a variety of ways. It mechanically displaces and compresses

the surrounding tissue, including the basement membrane (Figure 2.7: middle

and right). The tumor degrades and remodels the extracellular matrix (ECM),

both biomechanically and biochemically by the secretion of matrix degrading

enzymes such as matrix metalloproteinases (MMPs) that degrade the ECM.

The degraded ECM, in turn, can release ECM-associated growth factors that

fuel further tumor growth [647]. The degradation of the ECM by the MMPs

increases the ability of the tumor to push into the surrounding tissue, both by

reducing the mechanical rigidity of the surrounding tissue and by creating extra

space for the growing tumor [327]. The combination of proliferation-induced

pressure and proteolytic degradation of the surrounding tissue results in tis-

sue invasion: the invasion of sheets or “fingers” of tumor cells into the sur-

rounding tissue along paths of least mechanical resistance. Acidosis (a decreased

microenvironmental pH resulting from anaerobic glycolysis in hypoxic tumor

cells) has also been hypothesized to play a role in tumor invasion, by inducing

apoptosis in the surrounding normal epithelium, by giving invasive tumor cells

a selective advantage over tumor cells that have not adapted to acidity, and by

contributing to ECM degradation (due to proteases released by apoptotic cells)

[283, 529, 264, 266, 629, 265, 630, 627, 282, 281, 268, 628, 209, 284, 267].

There is recent evidence that tumors induce changes in gene expression in the

nearby stroma that help sustain tumor growth [328, 728]. For instance, carcino-

mas may release signaling molecules (e.g., IL-1β) that stimulate fibroblasts to

secrete hepatocyte growth factor (HGF). The HGF, in turn, promotes tumor cell

growth, decreases cell-cell adhesion, and increases MMP secretion [459]. Tumors

may also alter gene expression in nearby, non-cancerous epithelial cells [335].
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2.2.4 Vascular growth and metastasis

The next stage in cancer development can be viewed as a response to hypoxia.

The ultimate result is angiogenesis, where the tumor induces endothelial cells

to form a new vasculature that directly supplies the tumor with the nutrients,

enabling further expansion. Some of the same mechanisms responsible for angio-

genesis play a role in metastasis, the spread of tumor cells to distant locations.

Angiogenesis

As discussed in Section 2.1.5, hypoxia-inducible factors (e.g., HIF-1α) accumu-

late in hypoxic cells, which can trigger numerous downstream genetic targets.

In particular, the hypoxic cells secrete tumor angiogenic growth factors (TAFs)

such as vascular endothelial growth factor (VEGF) [716, 364, 13, 543]. These

TAFs diffuse outward from the hypoxic regions of the tumor and eventually reach

nearby blood vessels. See Figure 2.8: left.

Figure 2.8 Left: Angiogenic growth factors such as VEGF-A are secreted by hypoxic
tumor cells, leading to angiogenesis. Right: The fresh nutrient supply allows for
renewed tumor expansion.

Blood vessels are composed of tightly connected squamous (flat and scale-

like) endothelial cells that are surrounded by a basement membrane and other

supporting cells, including smooth muscle cells and pericytes [426]. When the

endothelial cells detect the TAF gradient emanating from the tumor, they secrete

MMPs that degrade the basement membrane and extracellular matrix [48] (Fig-

ure 2.8: left). This allows the endothelial cells to migrate away from the blood

vessel and toward the TAF source in the tumor. The leading endothelial cells are

referred to as sprout tips ; immediately behind the sprout tips, other endothelial

cells divide, migrate, align, and form tubes of polarized endothelial cells sur-

rounding a vascular lumen [494]. The vessels then link with one another to form

a network of loops in a process called anastomosis (Figure 2.8: left). It can take

on the order of 10 to 21 days for new vessels to form and connect to the parent

vessels [285, 48, 489].
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The end result is a neovasculature that provides the tumor with a direct supply

of oxygen and nutrients. The configuration of the neovasculature is determined

by the balance of pro- and anti-angiogenic growth factors, as well as by the

mechanical pressures from the growing tumor and flow stresses within the nascent

blood vessels [409, 653, 557, 287, 215]. The fresh nutrient supply allows a new

stage of rapid tumor growth into the surrounding tissue (Figure 2.9).

Figure 2.9 Invasive tumor growth into the stroma. The tumor grows to co-opt the
neovasculature, leading to collapse of some vessels and renewed hypoxia.

Angiogenesis is not unique to tumor growth, but is also a key part of wound

healing, the menstrual cycle, and embryonic development [114, 214]. However,

we note that tumor angiogenesis is pathological in nature, and the resulting vas-

culature is inefficient in a number of ways: the vessels are often “leaky” due to

large gaps between endothelial cells; the newly formed vessels are not as stiff and

rigid as mature vessels and may collapse when subjected to tissue stress (such

as that created by rapidly growing tumors); the basement membrane around the

new vessels may not be fully formed; some of the newly formed vessel walls may

be composed of a mosaic of tumor and endothelial cells; and the tumor neovas-

cular network tends to be much more tortuous than regular vascular networks

[218, 114]. See Figure 2.9. This inefficiency may hinder drug delivery within

tumors [342, 623], as well as lead to the development of new hypoxic regions

within the tumor and additional sessions of angiogenesis.

Tissue invasion and metastasis

A particularly damaging aspect of advanced cancer is metastasis, the spread of

tumor cells to form secondary tumors in distant locations. Metastasis occurs

most commonly in breast, prostate, and lung cancers [66], and it is estimated

that over 90% of all deaths from solid tumors result from metastasis [300]. In

spite of the great clinical importance of metastasis, it is poorly understood [362].

Metastasis is a complex phenomenon involving several mechanisms that

are closely related to tissue invasion. Genetic instability, intrinsic limits

(e.g., senescence), and extrinsic selective pressures (e.g., limited nutrients,
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immune system attacks) lead to competition within heterogeneous tumor

cell populations and the eventual selection for pro-metastatic genes [300].

Hypoxia creates a strong selective pressure, leading to increasing internal

HIF-1α levels in the tumor cells and the expression of genes responsible for

increased motility, glycolysis, reduced response to apoptotic pathways, and

increased production of MMPs [305]. The selective pressures also lead to

increased expression of genes responsible for locomotion [544]. As a result, tumor

cells degrade the BM and ECM and invade the stroma, either individually, as

small clumps of cells (emboli), or in cohort motion of sheets of cells linked by

cell-cell adhesion [490, 300]. Eventually, invasive tumor cells can enter the vas-

culature or lymphatic system. See Figure 2.9.

For sarcomas (which already reside in the stroma), this is accomplished by the

proteolytic degradation of the ECM and BM surrounding the stromal vessels,

followed by direct entry into the vessels. For carcinomas (which are separated

from the stroma by the BM), entry into the vasculature could also indirect

via the lymphatic system [200]. The mesenchymally-derived sarcoma cells move

with built-in cellular machinery in a contractile manner: by first degrading the

ECM on their leading edge, adhering to the ECM, and contracting, followed

by rebuilding the ECM on the trailing edge [672]; see Section 2.1.6. Epithelial-

derived carcinoma cells initially lack this locomotive ability, but mutations and

altered gene expression can restore these locomotive mechanisms; the process is

often referred to as the epithelial-mesenchymal transition (EMT) [544, 672].

Once the metastatic tumor cells have reached the vasculature, they circulate

in the blood. Initially, survival of the circulating tumor cells is inhibited by the

immune system, which kills most of the individual cells; emboli consisting of 5

to 10 cells are more likely to escape attack by the immune system [200]. Note

that the complex role of the immune system is poorly understood and may

both promote and inhibit metastasis. Circulating tumor cells that do survive

can eventually lodge in the capillary bed of distant organs; the most frequent

destinations include the liver, lungs, and bones [66].

However, without further tumor-host interaction, the destination microenvi-

ronment will not support the newly arrived metastatic tumor cells. Different

types of tumor cells tend to metastasize to specific tissues. This “seed and soil”

idea, that only specific tissues are suitable to each tumor cell line, was first

formulated by Stephen Paget in 1889 when studying breast cancer metastases

[519, 172, 487]. The reasons for this are only now being elucidated in an emerging

area of cancer research. The theory is that tumors release cytokines, VEGF, and

other chemical signals into the circulatory system that recruit progenitor and

endothelial cells from the bone marrow and vasculature to assist in creating a

pre-metastatic niche: a modified microenvironment in a distant host tissue that

is suitable for tumor metastasis [300]. In the process, the chemical signals alter

the gene expression in the endothelial cells in capillary walls at the destination

tissue, which then express additional adhesion molecules and secrete MMPs to
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degrade the basement membrane surrounding the capillaries [316, 200, 362].

The newly-expressed adhesion molecules on the inner surface of the capillary

bed improve the ability of the metastatic tumor cells to arrest at the destina-

tion, and the degraded BM assists in the extravasation of the tumor cells from

capillaries into the destination tissue.

Once the metastatic tumor cells successfully invade the destination tissue,

they secrete growth factors that induce additional changes in the new location.

Growth is similar to the mechanisms of tissue invasion that were introduced ear-

lier, but with additional elements. Tumor-induced changes in the stromal cells

cause them to degrade and remodel the matrix, even as the tumor cells also

secrete MMPs to degrade the matrix. Growth-promoting molecules that were

previously sequestered in the ECM fuel further tumor growth [200]. With ample

room to grow and a favorable microenvironment, these tumor cells can develop

into secondary tumors. Because the metastatic tumor cells have been selected for

their invasive phenotype, they are capable of expressing pro-angiogenic growth

factors to initiate angiogenesis and enter vascularized growth. The tissue speci-

ficity of this process is likely due to the combination and balance of cytokines

and chemicals secreted by the tumors, which, in turn, depends upon the genetic

makeup of the tumors [626]. It is thought that only a small fraction of the cells

in the primary tumor have the ability to recruit the proper progenitor and

endothelial cells to build the pre-metastatic niche [300].

The scientific understanding of metastasis is advancing rapidly, and the reader

is encouraged to read the reviews by [200, 300, 362, 521]. The reviews on bone

metastases by [421, 66] provide well-written, concrete examples of the process,

and they give an excellent overview of the latest in metastasis research.

2.3 Concluding remarks

In this chapter, we presented a simplified overview of the major topics in biology

that relate to cancer. Cancer modelers may wish to keep these topics in mind

as they study and extend the models presented in this book, and to explore the

excellent references cited in this chapter and elsewhere to learn more about these

biological themes in greater depth. In the following chapters of Part I, we present

state-of-the-art continuum, discrete, and hybrid models that incorporate a broad

spectrum of the tumor progression and behavior presented in this chapter.
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[185] D. Drasdo and S. Höhme. Individual-based approaches to birth and death in avascular

tumors. Math. Comput. Modelling, 37:1163–1175, 2003.



REFERENCES 259
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