
6 Discrete cell modeling1

With P. Macklin and M.E. Edgerton

In this chapter, we: introduce discrete cancer cell modeling; assess the strengths

and weaknesses of available discrete cell modeling approaches; sample the major

discrete cell modeling approaches employed in current computational cancer

modeling; and introduce a discrete, agent-based cell modeling framework cur-

rently being developed by the authors and collaborators that will be used to

implement a next-generation, multiscale cancer modeling framework as detailed

in Chapter 7.

6.1 A brief review of discrete modeling in cancer biology

Thus far, we have discussed continuum modeling efforts that model cancer at

the tissue scale and average out the effects of individual cells. We now turn our

attention to discrete models that address the behavior of one or more individual

cells as they interact with one another and the microenvironment.

Discrete modeling has enjoyed a long history in applied mathematics and biol-

ogy, dating as far back as the 1940s when John von Neumann applied lattice

crystal models to study the necessary rulesets for self-replicating robots [677].

Perhaps the most famous early example of discrete biological modeling is John

Conway’s 1970 “game of life,” a 2-D rectangular lattice of “cells” that changed

colors according to rules based upon the colors of the neighboring cells [261].

Even simple rules can lead to complex emergent behavior, and Conway’s model

was later shown to be Turing complete [598]. Today, discrete cell modeling has

advanced to study a broad swath of cancer biology, spanning carcinogenesis,

tumor growth, invasion, and angiogenesis.

Discrete, or individual-based, models are generally divided into two categories:

lattice-based (including cellular automata) and lattice-free (agent-based). Both

aproaches track and update individual cells according to a set of biophysical

rules. Typically these models involve a composite2 discrete-continuum approach

1 The agent model presented in this chapter is an extension of the work by Macklin et al.
(2009) [435], and an advance copy of the work to be submitted by Macklin et al. in [436].

2 Many refer to these as hybrid models, but we reserve the term for models that simultaneously
combine discrete and continuum representations for cells.



Discrete cell modeling 93

in the sense that microenvironmental variables (glucose, oxygen, extracellular

matrix, growth factors, etc.) are described using continuum fields while the cells

are discrete. See the reviews by Aber et al. [11], Moreira and Deutsch [478],

Drasdo [183], Araujo and McElwain [36], Quaranta et al. [556, 555], Hatzikirou

et al. [309], Nagy [493], Abbott et al. [2], Byrne et al. [98], Fasano et al. [210],

Galle et al. [253], Drasdo and Höhme [187], Thorne et al. [659], Anderson et al.

[29], Deisboeck et al. [170], Anderson and Quaranta [30], and Zhang et al. [723].

We now review these two main approaches and give some key examples from the

literature. Further review can be found in [427].

6.1.1 Lattice-based models

In lattice-based modeling, the cells are confined to a regular 2-D or 3-D lattice.

Each computational mesh point is updated in time according to deterministic

or stochastic rules derived from physical conservation laws and biological con-

straints. Some models use a high-resolution mesh to discretize the cells and the

surrounding microenvironment with subcellular resolution, allowing a description

of the cells’ finite sizes, morphologies, and biomechanical interactions. Cellular

automata (CA) models, which describe each cell with a single computational

mesh point, can be viewed as a special case of the approach.

The simple spatial arrangement of lattice-based models is relatively easy to

implement, rendering them broadly accessible beyond the traditional scientific

computing comunities with less need for advanced computational expertise. The

regular structure imposed by the computational mesh also eliminates the need for

elaborate interaction testing between the discrete cells. This is particularly true

for CA models on rectangular meshes, where cell-cell interaction is based upon

the immediate neighboring mesh points. It is also straightforward to directly

couple lattice-based methods to the microenvironment by assigning continuum

variables to every mesh point (in the case of CA methods) or a coarsened sub-

mesh (in the more general case).

The uniform spacing of lattice-based methods can be a weakness. While com-

putationally efficient, low-resolution lattices (CA methods) can impose artifi-

cial constraints on the arrangement, orientation, and interaction of the cells,

which can sometimes be observed as square or diamond-like artifacts. Such low-

resolution lattice-based models cannot capture non-lattice cell patternings often

found in both normal tissue (e.g., hepatic lobules) and cancer (e.g., cribriform

ductal carcinoma in situ, or DCIS). Because the cells only have several possible

orientations, these models can only crudely treat cell polarization; cell mechan-

ics can only be modeled with great difficulty. Hence, low-resolution models are

poorly-suited to the rigorous exploration of the balance of cell-cell adhesion, cell-

BM adhesion, and cell mechanics (e.g., deformability). High-resolution (subcel-

lular) meshes can better approximate cell mechanics, but are much more com-

putationally expensive, hence impeding their ability to describe large systems of

cells and microenvironment.
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6.1.2 Lattice-free models

Lattice-free models, frequently referred to as agent-based models, do not restrict

the cells’ positions and orientations in space. This allows a more complex and

accurate coupling between the cells and their microenvironment, and imposes

fewer artifical constraints on the behavior of multicellular systems. The cells are

treated as distinct objects or agents and are allowed to move, divide, and die

individually according to biophysically-based rules. For example, many models

apply free-body force diagrams to the individual cells, allowing a mechanistic

description of cell-cell and cell-ECM interactions. The level of detail in the cell

size, volume, and morphology can vary from simple (e.g., infinitesimal points in

3-D space, such as in [1, 59, 427, 229]) to complex (e.g., evolving deformable

spheres that develop cusps during mitosis, as in [188]). The agent interpretation

of the cells makes modern object-oriented programming languages (e.g., C++

and Java) ideal for implementing these models.

Agent-based models are ideal for situations of freely-wandering and nonuni-

formly arranged cells, such as angiogenesis, carcinogenesis, immune system

attacks on tumor cells, and metastasis. The level of detail of the agents can

be tailored to the simulation. Each cell agent can be assigned individual protein

and surface receptor signaling networks, a model of cell cycle progression, and

genotypic and phenotypic characteristics; this makes agent-based modeling a

powerful tool in multiscale frameworks. (Some agent-based models are restricted

to motion on a regular lattice to save on computational cost. See [721, 722] for

some examples.) The flexibility in detail, at times even down to the biochemical

level, can make agent-based models easier to calibrate to biological data.

This flexibility comes at a price, however. Because each individual cell can

be made almost arbitrarily complex, computational cost can be very high for

non-lattice, agent-based models, limiting the approach to smaller systems of

cells. The lack of a regular cell arrangement makes cell-cell interaction testing

computationally expensive as well. In the worst case where there are n cell agents

that may each interact with all n cells and there are no constraints on cell

placement, one must test n2 possible cell-cell interactions for each computational

time step. In such a worst case, computational cost increases rapidly as more cells

are added to the multicell system, rendering large-scale simulations infeasible.

6.1.3 Comparison with continuum methods

Continuum modeling can be too coarse-scaled to capture the spatial intricacy of

tissue microarchitecture when cells are polarized (with visible apex, base, and

anisotropic surface receptor distributions), or during individual cell motility.

Furthermore, continuum models tend to lump multiple physical properties into

one or two phenomenological parameters. For example, the models by [230, 439]

lump cell-cell, cell-BM, and cell-ECM adhesion, motility, and ECM rigidity into

a single “mobility” parameter, as well as forces on the tumor boundary. While
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this eases the mathematical analysis of the physical systems, it can be difficult

to directly match such lumped parameters to physical measurements. Some key

patient-specific measurements occur at the molecular (e.g., immunohistochem-

istry, or IHC) and cellular scales, i.e., at a finer scale than continuum models.

In contrast, discrete cell models can in some cases be directly matched to such

measurements. For example, Zhang, Deisboeck and colleagues have been very

successful in tying intracellular signaling models to individual cell phenotype

and motility in brain cancer [721]. Their work also made key advances in using

molecular and cellular data to inform and calibrate the cell-scale model. Several

groups (e.g., [719]) have made considerable advances at linking molecular- and

cell-scale models, often with calibration to data at the appropriate scales. This

is promising in the context of patient-specific cancer simulation (see Chapter 10)

and multiscale modeling , allowing molecular-, cellular-, and tissue-scale data

to be matched at their “native” scales; bi-directional data flow subsequently

propagates this information to all the scales in the model. See Chapter 7.1,

Section 10.4.3, and the Conclusions following Chapter 10 for more on this topic.

Discrete models have some drawbacks when compared with continuum

approaches. Because they rely upon the behavior of individual cells to deter-

mine emergent system properties, they can be difficult to analyze. In addition,

the computational cost of the methods increases rapidly with the number of cells

modeled, the lattice resolution (for lattice-based methods), and the complexity

of each cell object (for agent models). This can make the models difficult or

impossible to apply to large systems, even with parallel programming.

Other difficulties relate to model calibration. Non-local effects (e.g., biome-

chanics) are often better described by continuum variables, making calibration

more feasible at the continuum scale based upon macroscopic measurements.

Hybrid modeling (Chapter 7) can address this issue by applying and calibrat-

ing discrete and continuum models alongside one another, followed by rigorous

information flow between the scales.

Some model parameters, even if clearly related to cell-scale phenomena, may

be difficult to measure in controlled experiments, whereas macroscopic measure-

ments based upon the averaged behavior of many cells are simple to measure

accurately and match to lumped parameters in continuum models. However, we

note that analysis of volume-averaged agent models can sometimes provide fur-

ther insight on how to motivate and interpret such matching. See Section 6.5 for

such an example.

6.1.4 Some discrete modeling examples

We now discuss some discrete modeling examples that sample the range of cell-

scale tumor modeling. Our survey is not exhaustive of the immense level of

discrete modeling in cancer cell biology; the interested reader is encouraged to

examine the reviews listed in Section 6.1, as well as [427].
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Composite cellular automata modeling

In an illustrative example of cellular automata modeling, Anderson et al. devel-

oped a composite cellular discrete-continuum model of solid tumor growth

with microenvironmental interactions [28, 26]. The microenvironmental variables

(ECM and MMPs) are continuous concentrations, while tumor cells are discrete

cellular automata. Cells move via a biased random walk on a Cartesian lattice;

the movement probabilities are generated by discretizing an analogous contin-

uum model of the tumor cell density. The transition probabilities are similar in

spirit to the chemotaxis model developed earlier by Othmer and Stevens [512].

The cells respond haptotactically to the ECM density and produce MMPs that

degrade the matrix. Cell-cell adhesion was not considered. The model predicts

more extensive local tumor invasion in heterogeneous ECM than is predicted by

the analogous continuum model.

Building on this work, Anderson et al. extended their model to include cell-cell

adhesion by weighing the probability of motion by the number of desired neigh-

bors [26]. Different cell phenotypes are modeled by varying the number of desired

neighbors, the proliferation rate, and the nutrient uptake rate. The microenvi-

ronment plays an important role in the model: the nutrient supply is assumed

to be proportional to the ECM as a model of the pre-existing vasculature, and

so matrix degradation disrupts the nutrient supply as well. This model enabled

evaluation of how individual cell-cell and cell-ECM interactions may affect the

tumor shape. Anderson and co-workers further extended their model to provide

a theoretical/experimental framework to quantitatively characterize tumor inva-

sion as a function of microenvironmental selective factors [32]. In the extended

model, they considered random mutations among 100 different phenotypes.

In agreement with the findings of Cristini and co-workers [151, 725, 147, 231],

hypoxia and heterogenous ECM were found to induce invasive fingering in the

tumor margins, with selection of the most aggressive phenotypes.

Gerlee and Anderson simplified this model to investigate complex branched

cell colony growth patterns arising under nutrient-limited conditions [274]. In

agreement with earlier stability analyses (e.g., [151]), the stability of the growth

was found to depend on how far the nutrient penetrates into the colony. For

low nutrient consumption rates, the penetration distance was large, which stabi-

lized the growth; for high consumption rates the penetration distance was small,

leading to unstable branched growth. After incorporating a feed-forward neu-

ral network to model the decision-making mechanisms governing the evolution

of cell phenotype, Gerlee and Anderson demonstrated how the oxygen concen-

tration may significantly affect the selection pressure, cell population diversity,

and tumor morphology [273, 275]. They further extended this model to study

the emergence of a glycolytic phenotype [276]. Their results suggest that this

phenotype is most likely to arise in hypoxic tissue with dense ECM. The group

has further explored these themes recently with Quaranta and Rejniak [555].

Similar discrete modeling work on hypoxia has been pioneered in various col-
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laborations amongst Gatenby, Smallbone, Maini, Gillies, Gavaghan and others

(e.g., [264, 629, 265, 268, 630, 627, 628]).

Lattice-gas cellular automata models

Dormann and Deutsch developed a lattice-gas cellular automaton method for

simulating the growth and size saturation of avascular multicell tumor spheroids

[182, 175]. Unlike traditional cellular automaton methods where at most one cell

can be at a single grid point (volume exclusion), lattice-gas models accommodate

variable cell densities by allowing multiple cells per mesh point, with separate

channels of movement between mesh points. The channels specify direction and

velocity magnitude, which may include zero velocity resting states. Lattice-gas

models typically require channel-exclusion: only one cell may occupy a channel

at any time. Hatzikirou et al. [308] later used this approach to study traveling

fronts characterizing glioma cell invasion. Very recently, they performed a mean

field analysis of a lattice gas model of moving and proliferating cells to demon-

strate that certain macroscopic information (e.g. scaling laws) can be accurately

obtained from the microscopic model [308]. Accurate predictions of other macro-

scopic quantities that sensitively depend on higher-order correlations are more

difficult to obtain.

Immersed boundary model

In [563, 564], Rejniak developed a highly detailed lattice-based approach to mod-

eling solid tumor growth. Each individual cell is modeled using the immersed

boundary method [534, 533] on a regular computational grid. The cell is rep-

resented as the interior of an elastic membrane with the nucleus represented as

an interior point. Cell-cell adhesion and cell contractile forces are modeled using

linear springs to mimic a discrete set of membrane receptors, adhesion molecules

and the effect of the cytoskeleton on cell mechanics. The cytoplasm and inter-

stitial fluid are modeled as viscous, incompressible fluids. The elastic, adhesive,

and contractive forces impart singular stresses to the fluids. Cell growth is

modeled with an interior volume source; once the cell grows to a threshold vol-

ume, contractile forces on opposite sides of the cell create a neck that pinches

off to produce two approximately equal-sized daughter drops. Nutrient supply

is modeled using continuum reaction-diffusion equations, with uptake localized

in the cells. The method can describe individual cell morphology but is com-

putationally expensive, thus restricting simulations to about 100 cells. Rejniak

and Dillon recently extended the model to better represent the lipid bilayer cell

membrane structure as two closed curves connected by springs [567]; sources and

sinks placed in the simulated bilipid membrane modeled water channels.

The immersed boundary cell model has been applied to study preinvasive

intraductal tumors, as well as the formation and stability epithelial acini (single-

layered spherical shells of polarized cells attached to a BM) [567, 565, 566];

genetic mutations that disrupt cell polarity could lead to abnormal acini and

ductal carcinoma. The model has also been used to study the interaction between
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nutrient availability, metabolism, phenotype, and the growth and morphological

stability of avascular tumors [181, 31]. Morphological instabilities are in qual-

itative agreement with preceding continuum [151, 725, 418, 439] and cellular

automata [26, 32, 274, 273] modeling results.

An extended Q-Potts model

A less detailed lattice-based method has been developed using an extended Q-

Potts model, which originated in statistical physics to study surface diffusion

grain growth in materials science, as in [34]. Graner and Glazier adapted the

Q-Potts model to simulate cell sorting through differential cell-cell adhesion

[292, 286]. In this approach, now referred to as the GGH (Graner-Glazier-

Hogeweg) model, each cell is treated individually and occupies a finite set of

grid points within a Cartesian lattice; space is divided into distinct cellular and

extracellular regions. Each cell is deformable with a finite volume. Cell-cell adhe-

sion is modeled with an energy functional. A Monte Carlo algorithm is used to

update each lattice point and hence change the effective shape and position of

a cell. Although the description of the cell shape is less detailed than in the

immersed boundary approach described above, finite-size cell effects are incor-

porated.

Later work incorporated nutrient-dependent proliferation and necrosis in the

GGH model to simulate the growth of benign, multicellular avascular tumors to

a steady-state [642]; nutrient transport was modeled with a continuum reaction-

diffusion equation. The steady state configuration consisted of a central necrotic

core, a surrounding band of quiescent cells, and an outermost shell of proliferative

cells; parameters were determined by matching the thickness of these regions

to experimental measurements. Reference [667] extended the GGH model by

incorporating the ECM-MMP dynamics, haptotaxis, and adhesion-controlled

proliferation to study tumor invasion. The GGH model has also been extended

to account for chemotaxis [594], cell differentiation [321], and cell polarity [718].

Others have modified the GGH model to include a subcellular protein signaling

model to tie the cell cycle to growth promoters and inhibitors through con-

tinuum reaction-diffusion equations [353]. In that work, parameter values were

selected such that model produced avascular tumors that quantitatively repli-

cated experimental measurements of in vitro spheroids.

The GGH model has been used to simulate vasculogenesis and tumor angio-

genesis [467, 466, 468] in heterogeneous tumor microenvironments [55], as well as

the role of the ECM in glioma invasion [578]. Very recently, Poplawski and co-

workers used the GGH method to study the morphological evolution of 2-D avas-

cular tumors [541]; the work developed a phase diagram characterizing the tumor

morphology and the stability of the tumor/host interface with respect to critical

parameters characterizing nutrient limitations and cell-cell adhesion. In particu-

lar, they found that morphological stability depends primarily on the diffusional

limitation parameter, whereas the morphological details depend on cell-cell adhe-



Discrete cell modeling 99

sion. The results are consistent with previous continuum [151, 147, 418, 439] and

discrete [563, 274, 273, 31] modeling results.

Some semi-deformable agent-based models

Drasdo and co-workers developed an agent-based model that incorporates finite

cell size to study epithelial cell-fibroblast-fibrocyte aggregates in connective tissue

[188]. In their approach, simplified cells are modeled as a roughly spherical space

containing a central region. The cells are slightly compressible and are capable

of migration, growth and division. An undividing cell is taken to be spherical.

As a cell mitoses, it deforms into a dumbbell shape until its volume roughly

doubles, and then divides into two daughter cells. Adhesion and repulsion (from

limitations on cell deformation and compressibility) among cells are modeled

using an interaction energy that describes nearest-neighbor interactions. Mitosis

and migration may induce pressure on neighboring cells. The cells respond by

changing their mass or orientation to minimize the total interaction energy via a

stochastic Metropolis algorithm [470]. Interaction potentials have also been used

in agent models by Ramis-Conde and co-workers [560, 561]; in the model, cells

move down the gradient of the potential, analogous to minimizing the interaction

energy. Others have modeled cells as deformable viscoelastic ellipsoids [522, 163].

Drasdo and Höhme [185] adapted their approach to early-stage avascular

tumor spheroids, where growth is not primarily limited by oxygen or nutrient

supply, but rather by volume exclusion arising from limited cell compressibil-

ity. The biomechanical and kinetic parameters were estimated by comparison

with tumor spheroid experiments from [225]. They later extended the model

to account for glucose-limited growth, necrosis, and cell lysis, in order to sim-

ulate the spatiotemporal growth dynamics of 2-D tumor monolayers and 3-D

tumor spheroids with biophysical and kinetic parameters drawn from experimen-

tal literature [186]. The results suggested that biomechanical growth inhibition

is responsible for the transition from exponential to sub-exponential growth that

is observed experimentally for sufficiently large tumors; glucose deprivation was

found to primarily determine the size of the necrotic core but not the size of the

tumor. Galle et al. extended the model to incorporate the effect of BM contact

on cell cycle progress and apoptosis (see Section 2.1.1), and studied epithelial

cell growth in monolayers [255]. They found that inactivation of BM-dependent

cell cycle progression and apoptosis, or removal of contact-mediated growth

inhibition (e.g., see Section 2.1.5) could lead to epithelial tumor growth. In sim-

ilar monolayer simulations, Drasdo showed how the agent model can be used to

determine the rules for a simpler cellular automaton model for use in deriving a

continuum model with contact inhibition by coarse-graining, thereby providing

a link between different scales and biophysical processes [184]. Byrne and Drasdo

performed further analysis of the continuum model [104].
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Recent examples of subcellular modeling

Individual cell agents can readily be endowed witth subcellular models, making

them ideal multiscale modeling platforms. Recently, Ramis-Conde and colleagues

incorporated E-cadherin/β-catenin dynamics in an agent-based model to obtain

a more realistic model of cell-cell adhesion mechanics [561]; β-catenin binds the

membrane-bound E-cadherin to the cytoskeleton. Their detailed model could

describe the detachment of cells from a primary tumor and the corresponding

epithelial-to-mesenchymal transition. Galle et al. incorporated cell-ECM inter-

actions and ECM contact-dependent cell regulation as well as cell differentiation

[254]. They studied the effect of cancer stem cell organization on tumor growth,

finding that tumors invade the host tissue much more rapidly when stem cells

are on the tumor periphery, rather than confined to the interior.

Wang et al. developed a multiscale model of non-small cell lung cancer within a

2-D microenvironment, implementing a specific intracellular signal transduction

pathway between the epidermal growth factor receptor (EGFR) and extracel-

lular receptor kinase (ERK) at the molecular level [681]. Phenotypic changes at

the cellular level were triggered through dynamical alterations of these molecules.

The results indicated that for this type of cancer, downstream EGFR-ERK sig-

naling may be processed more efficiently in the presence of a strong extrinsic

chemotactic stimulus, leading to a migration-dominant cell phenotype and an

accelerated rate of tumor expansion. Zhang et al. presented a 3-D multiscale

agent-based model to simulate the cellular decision process to either proliferate

or migrate in the context of brain tumors [721]. Each cell was equipped with an

EGFR gene-protein interaction network module that also connected to a sim-

plified cell cycle description. The results show that proliferative and migratory

cell populations directly impact the spatiotemporal expansion patterns of the

cancer. Zhang and co-workers later refined their model to incorporate mutations

representing a simplified tumor progression pathway [722].

6.2 An agent-based cell modeling framework

To illustrate these concepts, we now introduce a discrete, cell-scale modeling

framework that combines and extends the major features of the models intro-

duced in Section 6.1. Our main objective is to develop a model that is sufficiently

mechanistic that cellular and multicellular behavior manifest themselves as emer-

gent phenomena of the modeling framework, rather than through computational

rules that are imposed a priori. An additional design goal is that the model

is modular (both in software and mathematics), allowing “sub-models” (e.g.,

molecular signaling, cell morphology) to be expanded, simplified, or outright

replaced as necessary.

We use a lattice-free, agent-based approach to allows more accurate cell

mechanics. We treat the cells (the agents) as physical objects subject to

biophysically-justified forces. Cell-cell and cell-BM mechanical interactions are
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modeled with interaction potential functions, similarly to [188, 185, 186, 184,

104]. The balance of these forces explicitly determines the cell’s velocity. The cells

have nonzero, finite size, similar to the work by [188, 185, 186, 184]. We explicitly

model mechanical interactions between the cells and the basement membrane,

similarly to the work in [570]. As with many of the discrete models in Section

6.1.4, each cell has a phenotypic state, with transitions between those phenotypic

states governed by stochastic processes. We note that we use the same model

for both cancerous and non-cancerous cells. The cells differ primarily in the val-

ues of their proliferation, apoptosis, and other coefficients; this is analogous to

modeling altered oncogenes and tumor suppressor genes [302].

We incorporate essential molecular biology through carefully-chosen constitu-

tive relations. In particular, we attempt to model the mechanics, time duration,

and biology of each phenotypic state as accurately as our data will allow; this

should facilitate model calibration to molecular- and cellular data. As in preced-

ing models (e.g., [28]), we incorporate the microenvironment using a composite

discrete-continuum appproach: the microenvironment is modeled as a set of

field variables (e.g., oxygen concentration, ECM density) governed by contin-

uum equations that can be altered by the discrete cells. Cell agents interact

with this microenvironment both mechanically and biochemically through sur-

face receptors that are part of a molecular-scale signaling model.

This agent model introduces several new features to discrete modeling as part

of our design philosophy. The cell states are chosen specifically to facilitate cal-

ibration to immunohistochemistry in patient-specific simulations. We explic-

itly link the phenotypic state transitions to the microenvironment and signal-

ing models through functional relationships in the stochastic parameters. Our

model differentiates between apoptosis and necrosis and introduces a model for

necrotic cell calcification. To better facilitate a mechanistic understanding of the

model and matching to experimental biology, we separate the forces into sepa-

rate potential functions, rather than lump them together into a single function.

We use interaction potential functions with compact support (are zero outside

some finite maximum interaction distance) to more realistically model the finite

interaction distances between cells and their neighbors. The adhesion model can

differentiate between homophilic and heterophilic adhesion, and separates the

effects of cell-cell, cell-BM, and cell-ECM adhesion.

In this discussion, cells are not polarized, and in particular, we assume an

isotropic distribution of cell surface receptors; we discuss model extensions to

address this in [436]. Also, we do not currently focus on stem cell dynamics,

although this can readily be added by identifying cells as stem cells, progenitor

cells, or differentiated cells, and assigning each class different proliferation and

other phenotypic characteristics. We treat the cells as mostly-rigid spheres, with

growth both in 2D and 3D; basement membranes are currently modeled as sharp

boundaries using level set functions [437, 438, 439, 440, 230, 441]. We present

applications of the model to breast cancer in in Section 6.6 and Chapter 10.
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6.2.1 A brief review of exponential random variables and Poisson processes

Because we model transitions between cell states as stochastic processes, we begin

with a brief review of the necessary preliminaries. This discussion necessarily only

introduces the key concepts and does not explore the full richness of measure

theory-based probability and stochastic processes. The interested reader can find

more in widespread references (e.g., [612, 507]).

A random variable T is exponentially distributed with parameter α if for any

t > 0, the probability Pr (T < t) is given by

Pr (T < t) = 1− e−αt. (6.1)

Also, T has expected value Ex [T ] = 1
α (i.e, the mean 〈T 〉 is 1/α) and variance

Var [T ] = 1
α2 . The simple relationship between the mean 〈T 〉 and α is useful for

calibration by limited data. Exponential random variables are memoryless. For

any 0 ≤ t,∆t, the probability that T > t+∆t given that T > t is

Pr (T > t+∆t|T > t) = Pr (T > ∆t) , (6.2)

i.e., if the event T has not occurred by time t, then the probability that the

event occurs within an additional ∆t units of time is unaffected by the earlier

times, and so we can “reset the clock” at time t. This is useful for modeling cell

decision processes that depend upon the current subcellular and microenviron-

mental state, and not on previous times. Even if the current cell decisions do

depend upon past times, that information can be built into the time evolution

of the internal cell state.

A stochastic process Nt is a series of random variables indexed by the “time”

t. In particular, Nt is a counting process if:

1. N0 ≥ 0. (The initial number of events N0 is at least zero.)

2. Nt ∈ Z for all t ≥ 0. (The current number of events Nt is an integer.)

3. If s < t, then Nt −Ns ≥ 0. (Nt is the cummulative number of events, and the

number of events occuring within (s, t] is Nt −Ns. )

A Poisson process Xt is a particular type of counting process satisfying:

1. X0 = 0. (The initial count is 0.)

2. If [s, s+∆s] and [t, t+∆t] are non-overlapping, then Xs+∆s −Xs and

Xt+∆t −Xt are independent random variables. (What happens in the interval

(t, t+∆t) is independent of what happened in (s, s+∆s).)

3. For any 0 ≤ s < t, the distribution of Xt −Xs only depends upon the length

of the interval (s, t) (stationary increments), and in particular, if n ∈ N,

Pr (Xt −Xs = n) =
e−α(t−s)α(t− s)

n!
. (6.3)

Poisson processes have a useful property that we rely upon in the model. If

An = inf {t : Pt = n} is the arrival time of the nth event (i.e., the first time at

which Xt = n), and Tn+1 = An+1 −An is the interarrival time between the nth
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and (n+ 1)st events for n ∈ N, then Tn is an exponentially-distributed random

variable with parameter α, and

Pr (Xt+∆t −Xt ≥ 1) = Pr (An ∈ (t, t+∆t]|An > t)

= Pr (Tn < ∆t) = 1− e−α∆t. (6.4)

Thus, for sequence of events governed by a Poisson process, the time between

consecutive events are simple exponentially-distributed random variables. In

the context of stochastic cell models, if Xt is a Poisson process that gives the

cummulative number of phenotypic state changes experienced by the cell by time

t, the time to the next phenotypic state change is exponentially distributed.

Lastly, we note that if α = α(t) varies in time, then Xt is a non-homogeneous

Poisson process with interarrival times given by

Pr (Xt+∆t −Xt = n) =
e−
∫ t+∆t

t
α(s) ds

(∫ t+∆t

t α(s) ds
)n

n!
Pr (Tn < ∆t) = Pr (Xt+∆t −Xt ≥ 1)

= 1− e−
∫∆t

0 α(s) ds

≈ 1− e−α(t)∆t, ∆t ↓ 0.

In our work, the Poisson processes are non-homogeneous due to their depen-

dencies upon microenvironmental and intracellular variables that vary in time.

However, these can be approximated by homogeneous processes on small time

intervals [t, t+∆t] as above [435, 436].

6.2.2 A family of potential functions

As in the work by [188, 185, 186, 184, 104], we shall use potential functions to

model biomechanical interactions between cells and the microenvironment. We

now introduce the family of interaction potential functions ϕ(x;R, n) used in the

agent model. Parameterized by R and n, they satisfy

ϕ(x;R, n) =

{

− R
n+2

(

1− |x|
R

)n+2

if |x| < R

0 else,
(6.5)

ϕ′(x;R, n) =

{(
1− x

R

)n+1
if x < R

0 else,
(6.6)

∇ϕ(x;R, n) =
{(

1− |x|
R

)n+1
x

|x| if |x| < R

0 else,
(6.7)

where R is the maximum interaction distance of ϕ, and n is the exponent of the

potential. We use this form of potential function because:
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1. The potential (and its derivatives) has compact support : it is zero outside a

closed bounded set (in this case, the closed ball B(0, R)). This models finite

cell-cell and cell-BM interaction distances.

2. For any R and n, and for any 0 < |x| < R, we have

0 = ϕ′(R;R, n) < ϕ′(|x| ;R, n) < ϕ′(0;R, n) = 1. (6.8)

The baseline case n = 0 is a linear ramping, and for higher n, the function

tapers off to zero gradient smoothly.

A good discussion of the use of potential functions to mediate cell-cell adhesion

and interaction for individual-based models can be found in [104].

6.2.3 Cell states

Figure 6.1 Flow between the cell states in the agent-based model. Reprinted with
permission from [436].

We emulate the cells’ biological function by endowing each agent with a state

S(t) in the state space {Q,P ,A,H,N , C,M}. Quiescent cells (Q) are in a

“resting state” (G0, in terms of the cell cycle); this is the “default” cell state in

the agent framework. We model the transitions between cell states as stochas-

tic events governed by exponentially-distributed random variables. (Transition

events are interarrival times modeling the elapsed time between proliferation

and apoptosis events. See [436] for a discussion of the mathematical theory of

this modeling construct.) Quiescent cells can become proliferative (P), apop-

totic (A), or motile (M). Cells in any state can become hypoxic (H); hypoxic

cells can recover to their previous state or become necrotic (N ), and necrotic

cells are degraded and replaced by calcified debris (C). See Figure 6.1. The sub-

cellular scale is built into this framework by making the random exponential
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variables depend upon the microenvironment and the cell’s internal properties.

Cell cycle models have also been developed which can regulate the P → Q tran-

sition [2, 721], and protein signaling networks have been developed to regulate

the Q → P , Q → A, and Q → M transitions. These can be directly integrated

into the agent framework presented here by modifying the stochastic parame-

ters; see Section 6.3. Further discussion of agent-based modeling with subcellu-

lar signaling components are in Section 6.1.4 and the excellent work done by

[404, 176, 692, 697, 46, 719, 347, 691, 378, 681, 721, 134, 133, 170, 723].

Proliferation (P):

Quiescent cells Q enter the proliferative state P with a probability that depends

upon the microenvironment. We model the probability of a quiescent cell enter-

ing the proliferative state in the time interval (t, t+∆t] as an exponential inter-

arrival time with parameter αP (S, •, ◦); • represents the cell’s internal (genetic

and proteomic) state, and ◦ denotes the local microenvironmental conditions.

Hence3,

Pr (S(t+∆t) = P|S(t) = Q) = 1− e−αP∆t ≈ αP∆t. (6.9)

Assuming a correlation between the microenvironmental oxygen level σ

(nondimensionalized by σ∞, the far-field oxygen level in non-diseased, “well-

oxygenated” tissue) and proliferation (See Section 10.4.2), we expect αP to

increase with σ.4 We model this by

αP = αP (S(t), σ, •, ◦) =
{
αP (•, ◦)σ−σH

1−σH
if S(t) = Q

0 else,
(6.10)

where σH is a threshold oxygen value at which cells become hypoxic, and αP (•, ◦)
is the cell’s Q → P transition rate when σ = 1 (i.e., in “well-oxygenated” tissue),

which depends upon the cell’s genetic profile and protein signaling state (•) and
the local microenvironment (◦). For simplicity, we model αP as constant for and

specific to each cell type. In Section 6.1.4, we discuss how to incorporate • (i.e., a

cell’s internal protein expression) and ◦ (as sampled by a cell’s surface receptors)

into αP through a subcellular, molecular signaling model. We note that models

have been developed that reduce the proliferation rate in response to mechanical

stresses (e.g., see the excellent description by [613]); in the context of the model

above, the cell samples these stresses from continuum-scale field variables or

tensors (i.e., “◦”) to reduce αP .

Once a cell has entered the proliferative state P , it remains in that state for

time β−1
P , which may generally depend upon the microenvironment and the cell’s

3 The interarrival time normally gives the probability of having at least one proliferation event
(rather than precisely one) during (t, t+∆t]. Our αP in Eq. (6.10) precludes this because
αP ↓ 0 until completing proliferation.

4 In Chapters 6 and 10, σ and g denote oxygen and glucose, which are generalized by the
substrate n in the remainder of the book. In these chapters, n denotes an integer.
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internal state, but which we currently model as fixed for both tumor and epithe-

lial cells (with the same value). This models our assumption that both tumor

and noncancerous cells use the same basic cellular machinery to proliferate, but

with differing frequency due to altered oncogene expression [302]. Once the cell

exits the proliferative state, we replace it with two identical daughter cells. Both

inherit the parent cell’s phenotypic properties, are randomly positioned adjacent

to one another while conserving the parent cell’s center of mass, and placed in

the “default” quiescent state.

Apoptosis (A):

Apoptotic cells are undergoing “programmed” cell death in response to internal

protein signaling. As with proliferation, we model entry into A as an exponential

interarrival time with parameter αA(S, •, ◦). We assume no correlation between

apoptosis and oxygen [195]. Hence, αA(S, •) is fixed for each cell population:

Pr (S(t+∆t) = A|S(t) = Q) = 1− e−αA∆t, (6.11)

where

αA = αA(S(t), •, ◦) =
{
αA(•, ◦) if S(t) = Q
0 else,

(6.12)

where ◦ does not include oxygen σ, but may include other microenvironmen-

tal stimuli such as chemotherapy or continuum-scale mechanical stresses that

increase αA, as in the work by [613]. Cells remain in the apoptotic state for a

fixed amount of time β−1
A . Cells leaving the apoptotic state are deleted from the

simulation to model phagocytosis of apoptotic bodies by surrounding epithe-

lial cells. Their previously-occupied volume is made available to the surrounding

cells to model the release of the cells’ water content after lysis.

Hypoxia (H):

Cells enter the hypoxic state anytime σ < σH . Hypoxic cells have an exposure-

dependent probability of becoming necrotic:

Pr (S(t+∆t) = N|S(t) = H) = 1− e−βH∆t, (6.13)

where we currently model βH as constant. If σ > σH (i.e., normoxia is restored) at

time t+∆t and the cell has not become necrotic, it returns to its former state (Q,

P , A, or M) and resumes its activity. For example, if the cell transitioned from

P to H after spending τ time in the cycle, and normoxic conditions are restored

before the cell transitions to N , then it returns to P with τ time having ellapsed

in its cell cycle progression. Because Pr (S(t+∆t) = N|S(t) = H) ≈ βH∆t, the

probability that a cell succumbs to hypoxia is approximately propotional to

` (t : S(t) = H), its cummulative exposure time to hypoxia. This construct could

model cell response to other stressors (e.g., chemotherapy), similarly to “area

under the curve” models (e.g., [197, 198]).
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Necrosis (N ):

In our model, a hypoxic cell has a probability of irreversibly entering the necrotic

state, simulating depletion of its ATP store. We can also simplify the model and

neglect the hypoxic state by letting βH → ∞.

We assume that cells remain in the necrotic state for a fixed amount of

time β−1
N , during which time their surface receptors and subcellular structures

degrade, they lose their liquid volume, and their solid component is calcified

(replaced by calcium deposits). We define β−1
NL to be the length of time for the

cell to swell, lyse, and lose its water content, β−1
NS the time for all surface adhe-

sion receptors to degrade and become functionally inactive, and β−1
C the time for

the cell to fully calcify. Generally, β−1
NL ≤ β−1

NS < β−1
C = β−1

N . In [435], we found

that a simplified model (β−1
N = β−1

NS = β−1
NL = β−1

C ) could not reproduce certain

aspects of the breast cancer microarchitecture.

If τ is the elapsed time spent in the necrotic state, we model the degradation

of the surface receptor species S (scaled by the non-necrotic expression level) by

exponential decay with rate constant βNS log 100; the constant is chosen so that

S(β−1
NS) = 0.01 S(0) = 0.01, i.e., virtually all of the surface receptor is degraded

by time τ = β−1
NS .

For a preliminary model of the necrotic cell’s volume change, we neglect its

early swelling and instead model it’s volume change after lysis:

V (τ) =

{
V if 0 ≤ τ < β−1

NL

VS if β−1
NL < τ,

(6.14)

where VS is the cell’s solid volume.

Lastly, we assume a constant rate of cell calcification, with the necrotic cell

100% calcified by time β−1
C . If C is the nondimensional degree of calcification,

then C(t) = βCτ .

Calcified debris (C):
Cells leaving the necrotic state N irreversibly enter the calcified debris state

C. Lacking functional adhesion receptors, these cells only adhere to other calci-

fied debris. This is a simplified model of the crystalline bonds between calcium

phosphate and/or calcium oxalate molecules in the microcalcification.

Motility (M):

The transition of cells to the motile state (via αM ) is a complex “decision”

that depends upon the cell’s microenvironment as communicated to the cell by

surface receptors and its internal signaling network. Once the cell enters M,

its speed (and hence βM ) and direction of motion depend upon its interaction

with the microenvironment. Depending upon the sophistication of the model, the

duration of motility can be fixed (constant βM ) or determined by the motility

model (e.g., βM = 0 until the cell reaches its destination, at which time we “force”

an immediate M → Q transition). We discuss this further in Section 6.2.4.
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6.2.4 Forces acting on the cells

Each cell is subject to competing forces that determine its motion within the

microenvironment. Cells adhere to other cells (cell-cell adhesion: Fcca), the extra-

cellular matrix (cell-ECM adhesion: Fcma), and the basement membrane (cell-

BM adhesion: Fcba), calcified debris adheres to other calcified debris (debris-

debris adhesion: Fdda), cells and calcified debris resist compression by other cells

and debris (cell-cell repulsion: Fccr), and the basement membrane resists its pen-

etration and deformation by cells and debris (cell-BM repulsion: Fcbr). Motile

cells experience a net locomotive force Floc along the direction of intended travel.

See Figure 6.2, where we show the forces acting on cell 5. In addition, moving

cells and debris experience a drag force Fdrag by the luminal and interstitial

fluids, which we model by Fdrag = −νvi. We express this balance of forces by

Newton’s second law acting on cell i:

miv̇i =
∑

j

(

Fij
cca + Fij

ccr + Fij
dda

)

+ Fi
cma + Fi

cba +

Fi
cbr + Fi

loc + Fi
drag. (6.15)

Here, the sum is over all cells j in the computational domain.

Figure 6.2 Basic schematic of the model. Key forces acting on cell 5 are labeled.
Reprinted with permission from [436].

Cell-cell adhesion (Fcca):

Cell-cell adhesion can be both homophilic [524] and heterophilic [633, 657, 429].
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Homophilic adhesion:
Adhesion molecules E on the cell surface bond with E molecules on neighboring

cells. Hence, the strength of the adhesive force between the cells is proportional

to the product of their respective E expressions. Furthermore, the strength of the

adhesion increases as the cells are drawn more closely together, bringing more

surface area and hence more adhesion molecules into direct contact. We model

this adhesive force between cells i and j by

Fij
cca = αccaEiEj∇ϕ

(
xj − xi;R

i
cca +Rj

cca, ncca

)
, (6.16)

where Ei and Ri
cca are cell i’s (nondimensionalized) adhesion receptor expression

and maximum cell-cell adhesion interaction distance, respectively, ri is the cell’s

radius, and ncca is the cell-cell adhesion power for our potential function family

in Section 6.2.2. We typically set Ri
cca > ri to approximate the cell’s ability to

deform before breaking all adhesive bonds, with the strength of force decreasing

as the cells are separated.

Heterophilic adhesion:
Adhesion molecules IA on the cell surface bond with IB molecules on neighboring

cells. Hence, the strength of the adhesive force between the cells is proportional to

the product of their IA and IB receptor expressions. Furthermore, the strength

of the adhesion increases as the cells are drawn more closely together, bringing

more surface area and hence more receptors into direct contact. We model this

adhesive force between cells i and j by

Fij
cca = αcca (IA,iIB,j + IB,iIA,j)∇ϕ

(
xj − xi;R

i
cca +Rj

cca, ncca

)
, (6.17)

where IA,i and IB,i are cell i’s (nondimensionalized) IA and IB receptor expres-

sions, Ri
cca is the cell’s maximum cell-cell adhesion interaction distance, and ncca

is the cell-cell adhesion power as before. As with homophilic cell-cell adhesion,

we typically set Ri
cca > ri to approximate the ability of cells to deform before

breaking all adhesive bonds, with the strength of force decreasing as the cells are

separated.

Cell-ECM adhesion (Fcma):

Integrins IE on the cell surface form heterophilic bonds with suitable ligands LE

in the ECM. We assume that LE is distributed proportionally to the (nondi-

mensional) ECM density E. If we assume that IE is distributed uniformly across

the cell surface and E varies slowly relative to the spatial size of a single cell,

then cells at rest encounter a uniform pull from Fcma in all directions, resulting

in zero net cell-ECM force. For cells in motion, Fcma resists that motion similarly

to drag due to the energy required to overcome I − L bonds:

Fcma = −αcmaIE,iEvi. (6.18)

If E or LE varies with a higher spatial frequency, or if IE is not uniformly

distributed, then the finite half-life of IE − LE bonds will lead to net haptotactic-
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type migration up gradients of E [586]. We currently neglect this effect except

by including it into the cell’s (active) locomotive force Floc.

Cell-BM adhesion (Fcba):

Integrin molecules on the cell surface form heterophilic bonds with specific lig-

ands LB (generally laminin and fibronectin [92]) on the basement membrane

(with density 0 < B < 1). We assume that LB is distributed proportionally to

the (nondimensional) BM density B. Hence, the strength of the cell-BM adhesive

force is proportional to its integrin surface receptor expression and B. Further-

more, the strength of the adhesion increases as the cell approaches the BM,

bringing more cell adhesion receptors in contact with their ligands on the BM.

We model this adhesive force on cell i by

Fi
cba = αcbaIB,iB∇ϕ

(
d(xi);R

i
cba, ncba

)
, (6.19)

where d is the distance to the basement membrane, IB,i and Ri
cba are cell i’s

(nondimensionalized) integrin receptor expression and maximum cell-BM adhe-

sion interaction distance, respectively, and ncba is the cell-BM adhesion power.

(See Section 6.2.2.) As with cell-cell adhesion, we typically set Ri
cba > ri to

approximate the cell’s limited capacity to deform before breaking all its adhesive

bonds.

(Calcified) debris-(calcified) debris adhesion (Fdda):

We model adhesion between calcified debris particles similarly to homophilic cell-

cell adhesion; hence calcite crystals in the interacting calcified debris particles

remain strongly bonded as part of the microcalcification. We model this adhesive

force between the calcified debris particles i and j by

Fij
dda = αddaCiCj∇ϕ

(

xj − xi;R
i
dda +Rj

dda, ndda

)

, (6.20)

where Ci and R
i
dda are cell i’s (nondimensionalized) degree of calcification and

maximum debris-debris adhesion interaction distance, and ndda is the debris-

debris adhesion power. The αdda can be interpreted as the adhesive force between

two fully-calcified debris particles.

Cell-cell repulsion (including calcified debris) (Fccr):

Cells resist compression by other cells due to the structure of their cytoskeletons,

the incompressibility of their cytoplasm (fluid), and the surface tension of their

membranes. We introduce a cell-cell repulsive force that is zero when cells are

just touching, and then increases rapidly as the cells are pressed together. We

approximate any pressure-induced cell deformation by allowing some overlap

between cells. We model Fccr by

Fij
ccr = −αccr∇ϕ (xj − xi; ri + rj , nccr) , (6.21)
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where nccr is the cell-cell repulsion power (Section 6.2.2) and αccr is the maximum

repulsive force when the cells are completely overlapping.

Cell-BM repulsion (including debris) (Fcbr):

We model the basement membrane as rigid and non-deformable due to its relative

stiffness and strength. Hence, it resists deformation and penetration by the cells

and debris particles. We model the force by

Fi
cbr = −αcbrB∇ϕ (d(xi); ri, ncbr) , (6.22)

where ncbr is the cell-BM repulsion power, d is the distance to the BM, and

αcbr is the maximum repulsive force when the cell’s center is embedded in the

basement membrane. Cells can secrete matrix metalloproteinases (MMPs) that

degrade the BM (Section 2.2.3) and hence reduce Fcbr; we model this effect by

making the cell-BM repulsive force proportional to the remaining BM density

B. We discuss this further in Section 6.4.

Motile locomotive force (Floc):

If S 6= M, then Floc = 0. Otherwise, we can model the locomotive force with

various levels of detail:

Imposed chemotaxis and haptotaxis:
For a simple motility model, we choose a deterministic direction of motion based

upon biological hypotheses, such as chemotaxis in response to growth factors f

and haptotaxis along gradients in the ECM E:

Floc = α1∇f + α2∇E. (6.23)

The coefficients α1 and α2 can be either fixed or altered to model energetic

concerns such as oxygen availability, level of receptor activation, and expression

of adhesive ligands necessary for traction. For instance, one could model

α1 = α1 (σ, g) ffrIE,iE, (6.24)

where g is the cell’s internal glucose level, α1(σ, g) models the rate of locomotion

as a function of oxygen and glucose, fr is the cell’s surface expression of receptors

to f ; ffr denotes overall activation of fr. Similarly, IE,iE gives the overall level

of binding of adhesion receptors IE,i to their ligands in the ECM. We apply

Floc for a fixed amount of time β−1
M ; afterwards, we set S = Q and Floc = 0. One

could use similar functional forms for α2.

Biased random motion:
Increasing the complexity somewhat, we choose a random direction of motion

when the cell enters the motile state and fix it for the duration of motility, with

distribution dependent upon the gradients of microenvironmental factors such
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as oxygen (σ), growth factors (f), and ECM (E). One such method is

w = r1∇σ + r2∇f + r3∇E, −1 ≤ r1, r2, r3 ≤ 1 (6.25)

Floc =
αloc

|w| w, (6.26)

where the distributions of the random variables r1, r2, and r3 are chosen accord-

ing to the desired weighting of oxygen taxis, chemotaxis, and haptotaxis. Random

weightings can be used to model more complex signaling dynamics, where the

cell must “choose” among competing signals, but the internal decision process is

unknown. We apply the vector of travel for pseudotime 0 ≤ τ ≤ β−1
M , after which

S = Q and Floc = 0.

Motion along the BM:
We can model motility along a basement membrane by extension and contraction

of lamellipodia as follows: at any time t that the cell state changes to M, we

choose a random direction w (with |w| = 1; see Figure 6.3a), and test the line

segment between x+ rw (on the cell membrane) and x+ (r + `podium)w (the

maximum extension of a lamellipodium) for intersection with the BM (labeled

as xloc in Figure 6.3b). If there is no intersection, we set S = Q. We assume that

the cell adheres to the BM with a lamellipodium at xloc and pulls towards this

location until either (i) the cell’s boundary reaches xloc (Figure 6.3c), or (ii) the

cell “gives up” at a maximum time β−1
M,max. Until then, we model

Floc = αloc
xloc − x

|xloc − x| , (6.27)

where αloc gives the cell’s speed of lamellipodium contraction. To avoid “double-

counting” cell-BM adhesion, we set Fcba = 0 during motility. See Figure 6.3.

Once motility is complete, we set Floc = 0 and S = Q.

Figure 6.3 To simulate motility along a basement membrane, we (a) choose a random
unit vector w, (b) test for intersection with the BM along that direction, and apply
Floc towards that intersection point until (c) the cell membrane reaches the BM.
Reprinted with permission from [436].

Mechanistic motility:
In a more rigorous motility model, we recognize locomotion as the combined

effect of directed actin polymerization (drives protrusion of the cell membrane)
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and differential cell-ECM adhesion [405]. Suppose that a(θ, ϕ, g, σ, f, fr) gives

the distribution of actin polymerization activity across the cell’s surface, where

0 ≤ a ≤ 1, and f and fr also vary with position (θ, ϕ) on the cell surface. Let

I(θ, ϕ) and E(θ, ϕ) denote the distributions of surface adhesion receptor and

nearby ligand, respectively, where these also vary between 0 and 1. Then the

distribution of successful adhesion of cell membrane protrusions to the ECM can

be modeled by

M(θ, ϕ) = a(θ, ϕ, g, σ, f, fr)I(θ, ϕ)E(θ, ϕ). (6.28)

We set

Floc = αlocamax OR Floc = αloc∇M, (6.29)

where amax is the direction that maximizes a (or is randomly chosen if ∇M = 0),

and we apply this force until reaching a maximum motility duration β−1
M . This

approach could replace the explicit treatment of cell-cell, cell-BM, and cell-ECM

adhesion. We are investigating this approach in a modified agent model that

explicitly discretizes cell membrane extension and retraction [586].

This general form should capture oxygen/glucose taxis, chemotaxis and hap-

totaxis as emergent properties, as well as the effects of ECM anisotropy: if the

rate of actin polymerization is assumed to correlate with local ATP availability

(proportional to glucose and oxygen), then ∇a should correlate with ∇g and ∇σ,
thereby recovering nutrient taxis. If actin polymerization is assumed to occur as

a result of an internal signaling response to a chemoattractant f and if the

receptor fr is roughly uniformly distributed, then ∇a should correlate with ∇f ,
giving chemotaxis as an emergent behavior. If a is uniform but the ECM has a

local gradient, then Floc ‖ ∇E, thus recovering haptotaxis. By incorporating a

signaling model into a that connects with actin polymerization activity (e.g., as

in [476, 456, 216, 707, 369, 593]), we can help make the model more mechanistic

and less phenomenological, thereby improving the predictivity of the model. This

is a key strength of multiscale modeling.

“Inertialess” assumption:

We assume that the forces equilibrate quickly, and so |miv̇i| ≈ 0. Hence, we

approximate
∑

F = 0 and solve for the cell velocity from Eq. (6.15):

vi =
1

ν + αcmaIE,iE




∑

j

(

Fij
cca + Fij

dda + Fij
ccr

)

+ Fi
cba + Fi

cbr + Fi
loc



 . (6.30)

This has a convenient interpretation: each term 1
ν+αcmaIE,iE

F� is the “terminal”

(equilibrium) velocity of the cell when fluid drag, cell-ECM adhesion, and F� are

the only forces acting upon it. (Here, “�” represents any individual force above,
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e.g., cba, cca, etc., and the summation is over all cells j in the computational

domain.) This will be useful when calibrating cell motility in future work, as

motility is generally measured as a cell velocity (e.g., [304]).

6.3 Subcellular modeling

We can incorporate a molecular-scale signaling model to improve the cell agent’s

“decision process.” For example, in the context of the EGFR pathway, Deisboeck

et al. modeled the PLCγ and ERK proteins to drive cell decisions on quiescence,

proliferation, and motility based upon thresholding on the time derivatives of

these proteins [169, 46, 45, 681, 721, 133, 723].

Taking an analogous approach, we may derive a generalized signaling model

by introducing a set of proteins P =
[
P1, P2, · · ·

]T
governed by a (nonlinear)

system of ODEs. Because the cell’s protein state depends upon sampling the

microenvironment, we define a “stimulus” vector S =
[
S1, S2, · · ·

]
, where the

Si may be oxygen, receptor ligands, and so forth. Furthermore, the signaling

network topology depends upon the cell’s genetic makeup, which we generically

refer to as G. Hence:

Ṗ = f (G,P,S) . (6.31)

The phenotypic transition probabilities then depend upon P and Ṗ.

We illustrate this idea with a rudimentary E-cadherin/β-catenin signaling

model. Let P1 be the cell’s unligated E-cadherin, P2 the ligated E-cadherin

(bound to E-cadherin S1 on neighboring cells, considered an external stimulus),

P3 the free cytoplasmic β-catenin, and P4 the ligated E-cadherin-β-catenin com-

plexes. Then a basic system of nonlinear ODEs that includes protein synthesis,

binding, dissociation, and proteolysis is given by [436]

Ṗ1 =

synthesis
︷︸︸︷
c1 −

homophilic binding
︷ ︸︸ ︷

c2S1P1 +

dissociation
︷︸︸︷

c3P2 −
proteolysis
︷︸︸︷

c4P1 (6.32)

Ṗ2 = c2S1P1 − c3P2 −
proteolysis
︷︸︸︷

c5P2 −
β-catenin binding
︷ ︸︸ ︷

d2P2P3 +

β-catenin dissociation
︷︸︸︷

d3P4 (6.33)

Ṗ3 =

synthesis
︷︸︸︷

d1 −d2P2P3 + d3P4 −
proteolysis
︷︸︸︷

d4P3 (6.34)

Ṗ4 = d2P2P3 − d3P4 −
proteolysis
︷︸︸︷

d5P4 (6.35)

The first two equations describe E-cadherin receptor trafficing, and the second

two give the interaction of cytoplasmic β-catenin with ligated E-cadherin. We

assume that transcription of downstream targets of β-catenin is proportional to

P3 (see Section 2.1.5) and incorporate this molecular signaling into the pheno-
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typic transformations by altering the Q → P transition parameter αP :

αP = αP fP (P3)
σ − σH
1− σH

. (6.36)

Here, fP satisfies f ′
P > 0 (transcription increases with P3), fP (1) = 1 (β-catenin

is not a limiting factor if there is no E-cadherin binding), and fP (0) = 0 (there

is no downstream transcription if all β-catenin is bound).

6.4 Dynamic coupling with the microenvironment

As discussed throughout Section 6.2.3, a cell agent’s behavior is inexorably linked

to the microenvironment. We now integrate the agent model with the microenvi-

ronment as part of a discrete-continuum composite model. We do this by intro-

ducing field variables for key microenvironmental components (e.g., oxygen,

signaling molecules, extracellular matrix, etc.) that are updated according to

continuum equations. The distribution of these variables affects the cell agents’

evolution as already described; simultaneously, the agents impact the evolution of

the continuum variables. We give several key examples to illustrate the concept.

Oxygen:

All cell agents uptake oxygen as a part of metabolism. At the macroscopic scale,

this is modeled by

∂σ

∂t
= ∇ · (D∇σ)− λσ, (6.37)

where σ is oxygen, D is its diffusion constant, and λ is the (spatiotemporally

variable) uptake rate by the cells5. Suppose that tumor cells uptake oxygen at

a rate λt, host cells at a rate λh, and elsewhere oxygen “decays” (by interacting

chemically with the molecular landscape) at a low rate background rate λb.

Suppose that in a small neighborhood B (a ball Bε(x) of radius ε centered at

x), tumor cells, host cells, and stroma (non-cells) respectively occupy fractions

ft, fh, and fb of B, where ft + fh + fb = 1. Then λ(x) is given by

λ(x) ≈ ftλt + fhλh + fbλb, (6.38)

i.e., by averaging the uptake rates with weighting according to the combination

of cell types and stroma present near x. Note that we could further decompose

ft and fh according to cell phenotype, if the uptake rates are expected to vary.

In a numerical implementation, λ is calculated first on a high-resolution mesh

(e.g., 1 mesh point is 1 cubic micron in 3D) and subsequently averaged to obtain

λ at the continuum scale (e.g., 1000 cubic micron mesh points) [436]. In this

5 In Chapters 6 and 10, σ and g denote oxygen and glucose, which are generalized by the
substrate n in the remainder of the book. In these chapters, n denotes an integer.
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formulation, the cell uptake rate varies with the tumor microstructure, which,

in turn, evolves according to nutrient and oxygen availability.

Extracellular matrix:

Cell agents adhere to the extracellular matrix and require ECM for certain types

of cell locomotion (Section 6.2.4). Cells can also affect the ECM by secreting

matrix metalloproteinases that degrade the extracellular matrix, and possibly

by also depositing new ECM (Section 2.2.3). If E is the concentration of ECM

and M is the concentration of MMPs secreted by the cells, then we model this

at the continuum scale similarly to our prior work in [441]:

∂E

∂t
= λEproduction (x)− λEdegradationEM (6.39)

∂M

∂t
= ∇ · (DM∇M) + λMproduction (x) − λMdecayM, (6.40)

where λ�production are production rates (� = E,M), λEdegradation is the rate ECM

degradation by MMPs, λMdecay is the MMP decay rate, and DM is the MMP

diffusion constant (generally low).

The production rates λ�production are upscaled from the cell scale analogously to

the oxygen uptake rate, and generally are functions of E and M . Reference [441]

used production rates of the form λ
�

production (1−�), � = E,M for a constant

value of λ within the tumor viable rim. This was an approximation of subcel-

lular signaling under the assumption that ECM and MDE production decrease

as E and M approach an equilibrium value, here scaled to 1. In a multiscale,

composite modeling context, however, these assumptions are not required, as the

phenomena can emerge directly from subcellular signaling models.

Basement membrane:

In Section 6.2.4, the basement membrane impacts the cell agents through a

balance of adhesive and repulsive forces. The cells can also impact the BM by

deforming and degrading it (Section 2.2.3). We model the BM as a sharp, hetero-

geneous, deformable interface. The cell agents require information on (1) their

distance to the basement membrane, and (2) the properties of the BM at that

closest location. We satisfy these requirements using an augmented level set

approach. For simplicity, we describe this method for simulations in 2D; the 3-D

approach is analogous.

Let
{
xBM (s) : 0 ≤ s ≤ 1

}
parameterize the basement membrane, let n(s) be

normal to the BM at xBM (s) for all s (facing towards the epithelial side of the

BM), and let b(s) =
(
b1(s), b2(s), . . .

)
be a set of properties along the basement

membrane at position x(s). In our work, b1 is the BM density and b2 is the

integrin concentration. For any point x in the computational domain, define

s(x) = s that minimizes
{∣
∣x− xBM (s)

∣
∣ : 0 ≤ s ≤ 1

}
, (6.41)
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that is, xBM (s (x)) is the closest point on the BM to x. Note that the minimum

value in Eq. (6.41) is equal to |d (x)|. For notational simplicity, let si = s (xi),

xBM
i = xBM (si), and ni = n(si) for any cell i.

Here, d(x) is the signed distance function (first referenced in Section 6.2.4),

satisfying:

d = 0 on the basement membrane

d > 0 on the epithelial side of the BM

d < 0 on the stromal side of the membrane

|∇d| ≡ 1 (d is a distance function).

We modify the cell-BM adhesive and repulsive forces to account for the het-

erogeneity introduced by b(s). The modified cell-BM adhesive force acting on

cell i is

Fi
cba = αcbaIB,ib

2(si)∇ϕ
(
d (xi) ;R

i
cba, ncba

)
. (6.42)

We modify the cell-BM repulsive force on cell i to

Fi
cbr = −αcbrb

1(si)∇ϕ (d (xi) ; ri, ncbr) ; (6.43)

note that this assumes that the BM stiffness is proportional to its density.

The MMPs secreted by the cells (M(x); see the previous section) degrade the

BM. We model this by

db1(s)

dt
= −λEdegradationb1(s)M

(
xBM (s)

)
for each 0 ≤ s ≤ 1. (6.44)

Cells in contact with the basement membrane impart forces that deform it. In

the simplest deformation model, the membrane acts like a semi-plastic material

whose deformations remain even if the cell-imparted stresses are eliminated. Any

cell contacting the BM with velocity directed towards it contributes locally to

the membrane normal velocity vBM (s). This membrane velocity varies according

to the heterogeneous membrane stiffness. We model this by first defining the BM

normal velocity wherever the cells are touching it:

vBM (si) =
−max (−vi · ni, 0)

b1(s)
for any i such that d (xi) < ri. (6.45)

We then smoothly interpolate this function to obtain vBM for other values of s.

We update the boundary position using this extended normal velocity (e.g., by

extending vBM off the basement membrane and using level set techniques, as in

[437, 438, 439, 440, 230, 441]).

More sophisticated models can also be applied to the membrane deformation.

We could discretize xBM and b, connect the discrete membrane points with

springs, and balance the forces at each membrane mesh point to model an elastic

boundary; gradually reducing the strain in each virtual spring could then model

relaxation in a viscoelastic material.
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More sophsticated still, we could upscale the cells’ velocities vi to obtain

the mean mechanical pressure in a coarsened spatial grid using Darcy’s law

〈v〉 = µ∇p, as in Chapter 3. Combined with proper material properties and

boundary conditions, we could then solve for the basement membrane velocity.

Ribba and co-workers have used similar approaches for continuum descriptions

of membrane deformations under viscoelastic stresses [570]. Such an approach

would be very well-suited to hybrid models, where both discrete and contin-

uum representations of the cell velocities are already present. In fact, mem-

brane deformations are better suited to continuum descriptions that are well-

developed for solid material mechanics, while membrane heterogeneity can be

well-characterized by the localized alterations by the discrete cells; this is a good

example where a hybrid model would be stronger than either a discrete or con-

tinuum approach alone. Chapter 7 will explore hybrid models in greater detail.

6.5 A brief analysis of the volume-averaged model behavior

Let us fix a volume Ω contained within the viable rim (i.e., any cell i in Ω

satisfies Si /∈ {H,N , C}). We analyze the population dynamics in the simplified

Q-A-P cell state network (we assume no motility); this analysis is the basis of the

model calibration in Section 10.3. Let P (t), A(t), and Q(t) denote the number

of proliferating, apoptosing, and quiescent cells in Ω at time t, respectively. Let

N(t) = P +A+Q be the total number of cells in Ω. If 〈αP 〉(t) = 1
|Ω|
∫

Ω αP dV

is the mean value of αP at time t throughout Ω, then the net number of cells

entering state P in the time interval [t, t+∆t) is approximately

P (t+∆t) = P (t) + Pr (S(t+∆t) = P|S(t) = Q)Q(t)− βPP (t)∆t

≈ P (t) +
(

1− e−〈αP 〉∆t
)

Q(t)− βPP (t)∆t, (6.46)

whose limit as ∆t ↓ 0 (after some rearrangement) is

Ṗ = 〈αP 〉Q − βPP. (6.47)

Similarly,

Ȧ = αAQ− βAA (6.48)

Q̇ = 2βPP − (〈αP 〉+ αA)Q. (6.49)

Summing these, we obtain

Ṅ = βPP − βAA. (6.50)

Next, define PI = P/N and AI = A/N to be the proliferative and apoptotic

indices, respectively. We can express the equations above in terms of AI and PI

by dividing by N and using Eq. 6.50 to properly treat d
dt (P/N) and d

dt (A/N).



Discrete cell modeling 119

After simplifying, we obtain a nonlinear system of ODEs for PI and AI:

ṖI = 〈αP 〉 (1−AI− PI)− βP
(
PI + PI2

)
+ βAAI · PI (6.51)

ȦI = αA (1−AI− PI)− βA
(
AI−AI2

)
− βPAI · PI. (6.52)

These equations are far simpler to compare to immunohistochemical measure-

ments, which are generally given in terms of AI and PI.

Lastly, let us nondimensionalize the equations by letting t = t̂ t, where t̂ is

dimensionless. Then if f ′ = d
dt̂
f , we have

1

t
PI′ = 〈αP 〉 (1−AI− PI)− βP

(
PI + PI2

)
+ βAAI · PI (6.53)

1

t
AI′ = αA (1−AI− PI)− βA

(
AI−AI2

)
− βPAI · PI. (6.54)

The cell cycle length β−1
P is on the order of 1 day (e.g., as in [515]), and

in Section 10.4.1, we determine that βA is of similar magnitude. Thus, if we

choose t ∼ O (10 day) or greater, then we can assume that 1
t
PI′ = 1

t
AI′ = 0 and

conclude that the local cell state dynamics reach steady state after after 10-100

days. This is significant, because it allows us to calibrate the population dynamic

parameters (αA, αP , βA, and βP ) without the inherent difficulty of estimating

temporal derivatives from often noisy in vitro and immunohistochemistry data.

6.6 Numerical examples from breast cancer

We now present numerical examples of the agent model applied to ductal carci-

noma in situ: a type of breast cancer where the cells are confined to growth and

motion in a breast duct. We focus on the simulation results and defer a biological

discussion of breast cancer and model calibration to Chapter 10.

For simulation in 2D, consider cells growing in a fluid-filled domain Ω (repre-

senting a rigid-walled duct) of length ` (1 mm in our simulations) and width 2R

(340 µm in our simulations). We “cap” the left edge of the simulated duct with

a semicircle of radius R. Cells are removed from the simulation if they cross the

right edge of the computational boundary. We represent the duct wall with a

signed distance function d satisfying d > 0 inside the duct.

Cell states (see Figure 6.1) include the proliferative (P), quiescent (Q), apop-

totic (A), hypoxic (H), necrotic (N ), calcified debris (C) and motile (M) states.

We use the simplified model of motility along a basement membrane in randomly-

selected directions. See Figure 6.3. For simplicity, we neglect membrane degra-

dation, membrane deformation, and molecular-scale signaling, allowing us to

instead focus upon the effects of the various cell states and forces. We assume

there is no ECM in the duct (Fcma = 0), and cells adhere to one another with

E-cadherin (homophilic adhesion) and to the BM with integrins. We assume the

surface adhesion receptors and BM adhesion ligands are distributed uniformly

on the cell surfaces and BM, respectively.
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We model oxygen transport within the duct by
{

∂σ
∂t = D∇2σ − λσ if x ∈ Ω

σ = σB if x ∈ ∂Ω,
(6.55)

where λ is the locally-averaged oxygen uptake rate discussed in Section 6.4.

We use a Neumann condition ∂σ/∂n = 0 on the righthand side of the duct.

The parameter values for the simulations are given in Table 6.1. The duct size,

population parameters (αA, αP , βA, and βP ), balance of cell-cell adhesion and

repulsion (αcca vs. αccr), and oxygen boundary value σB are calibrated to the

patient data presented in Chapter 10; more detail is given there. Further detail

on the numerical implementation can be found in Section 10.2.4 and [436].

Parameter Physical Meaning Value

2Rduct duct diameter 340 µm
Lduct duct length 1 mm
R Cell radius 9.953 µm
σH hypoxic oxygen threshold 0.2

σB duct boundary O2 value
0.263717 if λb = 0.001
0.277491 if λb = 0.01
0.386095 if λb = 0.1

〈λ〉 mean oxygen uptake rate 0.1 min−1

λt tumor cell O2 uptake rate 0.1 min−1

λb background O2 decay rate 0.001, 0.01, or 0.1 min−1

〈λ〉 L oxygen diffusion length scale 100 µm

α−1
A

mean time to apoptosis 786.61 hours

α−1
P

mean time to proliferation (when σ = 1)
115.27 min if λb = 0.001
151.21 min if λb = 0.01
434.53 min if λb = 0.1

β−1
A

time to complete apoptosis 8.6 hours

β−1
P

time to complete cell cycle 18 hours

β−1
NC

time to complete calcification 15 days

β−1
H

mean survival time for hypoxic cells 0 or 5 hours

β−1
NL

time for necrotic cells to lyse 2, 24, 120, or 360 hours

β−1
NS

necrotic cell surface receptor degradation time 5 or 15 days
VS/V solid cell fraction 10%
αcca, αcba, αdda cell-cell, cell-BM, debris adhesive forces 0.391531ν (µm/min)
αccr cell-cell repulsive force 8ν (µm/min)
αcbr cell-BM repulsive force 5ν (µm/min)
αloc locomotive (motile) force 5ν (µm/min)

α−1
M

mean time between migration events 120, 300, or ∞ min

β−1
M,max maximum motility time 15 min

`podium maximum lamellipodium length 15 or 20 µm
ncca, ncba, ndda adhesion potential parameters 1
nccr, nnbr repulsion potential parameters 1
Rcca,Rccr,Rcba,Rcbr maximum interaction distances 12.083 µm

Table 6.1. Main parameters used for the agent model DCIS simulations.

6.6.1 Baseline calibrated run

We first simulate DCIS with simplified hypoxia (β−1
H = 0) and no motility

(αM = 0). We apply a simplified model of necrosis: β−1
NS = β−1

NL = β−1
NC . We

set λb = 0.01λt. The dynamic simulation is presented in Figure 6.4.
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Figure 6.4 Dynamic agent-based simulation of DCIS in a 1 mm duct. Legend:
quiescent cells are white, apoptotic cells are black, proliferating cells are diagonally
striped, necrotic cells are light gray, and calcified cell debris is dark gray. Reprinted
with permission from [436].

In the simulation, a small initial population begins proliferating into the duct

(0 days). As the tumor grows along the duct, oxygen uptake by the cells leads to

the formation of an oxygen gradient (not shown). At time 5.04 days, the oxygen

level drops below σH in the center of the duct near the leading edge of the

tumor, causing the first instance of necrosis (light gray cells). By 7 to 14 days,

a viable rim of nearly uniform thickness (approximately 80 µm thick) can be

observed, demonstrating the overall oxygen gradient decreasing from σB at the

duct boundary to σH at the edge of the necrotic core. (See also Section 10.3.3.)

This is consistent with the prediction in Section 6.5 that the cell state dynamics

reach a local steady state by 10 to 100 days.

Consistent with the assumed functional form of the Q → P transition, prolif-

erating cells (diagonally striped) are most abundant near the duct wall where
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the oxygen level is highest, with virtually no proliferation at the peri-necrotic

boundary. Because oxygen can diffuse into the tumor from the duct lumen (with

low decay rate λb), viable tumor cells are also observed along the tumor’s leading

edge near the center of the duct. See Figure 6.4 at times 7, 14, and 21 days.

Cells begin to lyse at 20.04 days, and because βNC = βNL, they immediately

calcify (dark gray cells). By 28 days, another characteristic length emerges: the

trailing edge of the microcalcification maintains a distance of approximately 500

µm from the end of the duct. Several features combine to cause this. We do not

model contact inhibition, and so cells at the end of the duct continue to proliferate

and push cells toward’s the tumor’s leading edge. Because the end of the duct has

reached a local dynamic equilibrium by this time (see the discussion above and

[439]), a steady flux of tumor cells into the necrotic region has emerged. Because

the lysis and calcification times (β−1
NL and β−1

NC) are fixed, the cells are pushed

a fixed distance along the necrotic core before lysing and calcifying, leading to

the observed “standing wave” pattern.

The viable rim of the tumor reaches the end of the simulated 1 mm stretch

of the duct by time 22.5 days, and the necrotic core reaches this computational

boundary by approximately 24 days. Cells that exit the computational domain

are removed from the simulation, leading to an artificial drop in mechanical

resistance to growth, particularly as cells from the trailing edge of the tumor

continue to proliferate and push into the lumen. Thus, the simulation is more

valuable for examining the radial tumor dynamics than the rate of progression

through the duct after this time.

6.6.2 Impact of hypoxic survival time

We next examined the impact of β−1
H , the mean time hypoxic cells survive before

necrosing. We found that increasing β−1
H from 0 to 5 hours has a minimal impact

on the simulation, principally by delaying calcification (because cells wait a few

more hours before necrosing). (Results not shown.)

The minimal impact of βH on the current model behavior is not surprising:

hypoxic cells are not motile in this model implementation, and the overall flux

of cells is from the proliferating rim towards the center of the duct. Hence, there

is no opportunity for hypoxic cells to take advantage of their increased survival

time to return to the viable rim. Thus, increasing β−1
H merely delays necrosis

(in this model formulation). Furthermore, the hypoxic cells are not glycemic in

this model, and so they do not lower the pH (acidosis) in the nearby viable rim;

hence, the increased hypoxic survival time does not impact the survivability

and behavior of cells in the viable rim. We expect that βH would have a greater

impact if:

1. hypoxic cells were allowed to switch to anaerobic glycolysis, thus making the

viable rim microenvironment acidic and giving the hypoxic cells a competitive

advantage over nearby non-resistent tumor cell strains;
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2. hypoxic cells were allowed to migrate out of the hypoxic region, thereby pro-

pogating their phenotypic adaptations into the tumor viable rim;

3. continuing the previous point, hypoxic cells could reach the basement mem-

brane and initiate invasive carcinoma; and

4. hypoxic cells may experience increased genetic instability due to the harsh

environment. This tends to accelerate the previous points.

Taken together, hypoxia would be expected to increased tumor invasiveness if

these aspects were incorporated in the model.

6.6.3 Impact of the cell lysis time

Next, we investigate the impact of the necrotic cell lysis time β−1
NL on the over-

all tumor evolution. We varied β−1
NL with values 15 days, 5 days, 1 day, and 2

hours. Because surface receptor degradation is likely a faster process than cell

calcification, we set β−1
NS to 5 days. However, we found that varying βNS had

little impact on the mechanical behavior due to the dense cell packing in the

simulated tumors.

Figure 6.5 Impact of the necrotic cell lysis timescale: We plot the DCIS
progression at time 25 days for β−1

NL = 15 days (top), 5 days (second from top), 1 day
(second from bottom), and 2 hours (bottom). Reprinted with permission from [436].
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In Figure 6.5, we plot the DCIS simulations at time 25 days for each of these

lysis parameter values. The parameter has a great effect on the rate of tumor

advance through the duct: as the lysis time is decreased, the rate of tumor

advance through the duct slows. This is because the necrotic core acts as a

volume sink when the cells lyse, thereby relieving mechanical pressure. In turn,

more of the cell flux is directed towards the center of the duct, rather than

forward towards the tumor leading edge. Once β−1
NL < 1 day, further reductions

have little additional impact on the tumor progression, because the time the cells

spend in an unlysed state is much smaller than the growth time scale.

In addition, the size of the microcalcification grows as β−1
NL decreases. This

is because more cells are pushed into the necrotic core rather than forward for

small values of β−1
NL, whereby a greater number of cells have been in the necrotic

region longer than the calcification time β−1
NC . Furthermore, the microcalcifica-

tion appears to have a rounder morphology for the shorter lysis times. This

topic is still under investigation, but it appears to be due to the more uniform

packing of the lysed necrotic cells, owing to their occupying a greater percentage

of the necrotic core for small values of β−1
NL. Furthermore, the microcalcifications

appear to occupy a larger percentage of the duct cross section due to the slower

rate of tumor advance through the duct.

Similarly to the “standing wave” calcification pattern in the baseline simula-

tion (and for similar reasons), a characteristic length emerges between the end

of the duct and the start of the lysed cell region. This length is shorter than the

distance from the end of the duct to the trailing edge of the calcification. These

lengths both decrease as β−1
NL decreases, due to the faster progression from viable

cells to necrotic cells to lysed cells to calcified cells.

In a detailed comparison of these simulation results to breast histopathology,

we find that 1 day ≤ β−1
NL ≤ 5 day yields the best match between the simulated

and actual necrotic core morphological features, including the rough distribution

of lysed and unlysed cells and the general appearance of the necrotic cross

sections [436].

6.6.4 Impact of background oxygen decay rate

We varied λb with values 0.001 min−1, 0.01 min−1, and 0.1 min−1 to investigate

its impact on the simulation results. Aside from eliminating the viable cells from

the center of the tumor’s leading edge (see the baseline run), there was very

little impact on the simulations (not shown). This is because the tumor necrotic

centers were densely packed for all values of λb, and since necrotic cells uptake

oxygen at rate λt = 〈λ〉, the oxygen uptake rate is equal throughout the bulk of

the computational domain. Thus, the oxygen profile is similar for all three cases,

leading to comparable amounts of cell proliferation in all cases; i.e., the extra

viable cells in the leading edge did not contribute substantially to the tumor’s

advance through the duct. However, λb may have a greater impact in less dense

tumors, such as cribriform DCIS (see Section 10.1.2).
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6.6.5 Impact of cell motility

When next allowed random cell motility along the basement membrane, as

described in Section 6.2.4. We set β−1
NL = 2 hours, β−1

H = 5 hours, and inves-

tigated the role of the mean time to migration (α−1
M = 300 min, 120 min) and

that of the maximum lamellipodium length (15 or 20 µm). We set the maximum

migration speed (αloc/ν) to 5 µm/min and the maximum duration of migration

to 15 min. All simulations set λb = 0.001 min−1.

In Figure 6.6, we plot the simulations at time 30 days for 15 µm maxi-

mum lamellipodium length, for αM = 0 (top), α−1
M = 300 min (middle), and

α−1
M = 120 min (bottom). In additional to the earlier figure legends, hypoxic cells

are light gray with black dots. As α−1
M is decreased from infinite (top) to 120 min

(bottom), the tumor leading edge morphology becomes less blunt, and the tumor

advances slightly farther along the duct. Thus, even random motility can increase

the rate of a tumor’s advance through a breast duct. We expect that this effect

will be more pronounced if the cells instead move in a directed manner (e.g.,

chemotactically, as in Paget’s disease [166]).

We also increased the maximum lamellipodium length `podium from 15 µm

to 20 µm for α−1
M = 120 min. Similarly to decreasing α−

M , increasing `podium
accentuates the effect of motility because the motile cells can travel farther per

migration event (simulation not shown). Note that these effects are subtle, and

so further analysis and simulations (with different random seeds) are required to

fully quantify them and confirm their statistical significance.

Figure 6.6 Impact of cell motility: As the mean time to migration is decreased
from infinite (top) to 300 minutes (middle) to 120 minutes (bottom), the rate of
tumor advance through the duct is slightly increased, with the leading edge more
spread out. Reprinted with permission from [436].



126 Chapter 6. Discrete cell modeling

6.7 Conclusions

In this chapter, we reviewed the major discrete modeling approaches currently

employed in mathematical cancer cell biology, with particular focus on a gener-

alized agent-based cell modeling framework. After a brief analysis of the model’s

population dynamics, we closed by presenting numerical examples of the model

applied to breast cancer; this application is explored in greater depth in Chapter

10. We found that the specific modeling of the necrotic volume loss can have

a major impact on the rate of tumor advance through the duct. Furthermore,

even random cell motility along the basement membrane can speed a tumor’s

spread through the duct system, and the effect should be much more pronounced

in cases of directed motility, such as Paget’s disease (chemotactic motion along

the ducts towards chemoattractants released by keratinocytes in the breast nip-

ple [166]). On the other hand, we found that if hypoxia is modeled merely as

a delayed progression to necrosis, then it has little impact on DCIS progres-

sion; instead, glycolysis, acidosis, and motility must be considered. This finding

is consistent with previous modeling results by Gatenby and co-workers (e.g.,

[264, 629, 265, 268, 630, 627, 628]).
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