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Modeling multiscale necrotic and calcified tissue
biomechanics in cancer patients: application to
ductal carcinoma in situ (DCIS)

Paul Macklin, Shannon Mumenthaler, and John Lowengrub

Abstract Tissue necrosis and calcification significantly affect cancer progression
and clinical treatment decisions. Necrosis and calcification are inherently multi-
scale processes, operating at molecular to tissue scales with time scales ranging
from hours to months. This chapter details key insights we have gained through
mechanistic continuum and discrete multiscale models, including the first modeling
of necrotic cell swelling, lysis, and calcification. Among our key findings: necrotic
volume loss contributes to steady tumor sizes but can destabilize tumor morphology;
steady necrotic fractions can emerge even during unstable growth; necrotic volume
loss is responsible for linear ductal carcinoma in situ (DCIS) growth; fast necrotic
cell swelling creates mechanical tears at the perinecrotic boundary; multiscale in-
teractions give rise to an age-structured, stratified necrotic core; and mechanistic,
patient-calibrated DCIS modeling allows us to assess our working biological as-
sumptions and better interpret pathology and mammography. We finish by outlining
our integrative computational oncology approach to developing computational tools
that we hope will one day assist clinicians and patients in their treatment decisions.

1 Introduction

At its most basic level, cancer is a disease of uncontrolled cell proliferation: cancer
cells, either through mutations or epigenetic alterations, overexpress oncogenes and
underexpress tumor suppressor genes (TSGs). Consequently, the cells enter into and
progress through the cell cycle more often than they should and disregard apoptotic
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signals, resulting in a net increase in proliferation and aberrant tissue growth. (See
recent cancer biology tutorials for modelers and physical scientists, such as [50,
52,53].) Accordingly, cell proliferation and apoptosis, along with genetic mutations
and epigenetic alterations in genes controlling these processes, have been major
foci of both basic cancer research and modeling. Most cancer therapies attempt to
manipulate these processes either by cytostatic (suppressing entry to or progression
through the cell cycle) or cytotoxic (inducing apoptosis: programmed cell death)
mechanisms. For example, chemotherapy agents such as doxorubicin are considered
to be cytotoxic [10]; therapies that target hormone-addicted cells (e.g., tamoxifen in
estrogen-driven breast cancer) are considered to be cytostatic [74].

Key biological and clinical terms
basement membrane (BM) (≈100 nm) thick plasto-viscoelastic membrane separat-

ing epithelial and stromal tissues
extracellular matrix (ECM) fibrous supportive scaffolding in stromal tissue
oncogene a growth-promoting gene
tumor suppressor gene (TSG) a growth-inhibiting gene
apoptosis well-regulated, programmed cell death
anoikis apoptosis due to loss of attachment to the BM
necrosis disordered cell death
oncosis cell death at the start of (or preceding) necrosis, marked

by rapid cell swelling
adenosine triphosphate (ATP) the immediate product of aerobic cell metabolism, and

the “currency” of cell energy
(apoptotic) caspase proteases responsible for degrading intracellular proteins

during apoptosis
in situ carcinoma cancer contained by an intact BM
ductal carcinoma in situ (DCIS) an in situ precursor to invasive ductal breast cancer
comedonecrosis necrotic tissue filling the lumen of a gland, most typically

with intraductal breast cancers
invasive ductal carcinoma (IDC) an invasive breast cancer derived from ductal cells
Van Nuys Prognostic Index (VNPI) a system for evaluating DCIS and guiding treatment

Necrosis–the disorderly death of cells due to rapid injury or energy depletion—
has seen less attention in basic cancer research and computational modeling. Indeed,
cancer apoptosis publications outnumber cancer necrosis in PubMed by over three to
one after excluding tumor necrosis factor (TNF) citations that are more directly re-
lated to apoptotic signaling than necrosis. Many prominent mathematical models do
not incorporate necrosis (e.g., [8]), while others generically model cell death while
failing to differentiate between apoptosis and necrosis. For example, the recent duc-
tal carcinoma in situ (DCIS) model in [83] provided an excellent model of cell death
due to energy depletion, but the work did not differentiate this death process (necro-
sis) from death due to detachment from the basement membrane (anoikis). As we
shall see below, apoptosis and necrosis take widely divergent courses, particularly
in cases of DCIS that exhibit comedonecrosis (necrosis filling the lumen of a gland).
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Those models that do include necrosis have often modeled it as an instantaneous
or fast time scale process by immediately removing necrotic cells from the sim-
ulations (e.g., [2]). Others have modeled necrosis as simple volume loss terms in
continuum models (e.g., [12, 89, 90]), or as inert, persistent debris in discrete mod-
els (e.g., [21, 71]). While these are more true to the generally longer time scale of
necrosis, they still fail to account for the multiscale processes involved and their
potential biomechanical impact on tumor progression. None of these or other prior
works have examined calcification of necrotic debris.

And yet necrosis plays a prominent, essential role in many carcinomas. A 1 mm
tumor spheroid with a typical 100 µm viable rim is over 50% necrotic by volume.
Cell death in such a significant fraction drastically alters mass transport throughout
a tumor and can lead to steady size dynamics as proliferative cell flux out of the
viable rim balances with fluid flux released by degrading necrotic cells [13, 50, 52].
See Fig. 1(left). Necrosis has a proven prognostic value in breast cancer, particularly
ductal carcinoma in situ (DCIS) [72, 92]: presence or absence of comedonecrosis is
a prominent part of the Van Nuys Prognostic Index (VNPI) [84]. Moreover, DCIS
is primarily detected as subtle patterns of calcified necrotic tissue in mammograms
[27,29,82]. See Fig. 1(right). 90% of all cases of nonpalpable DCIS are detected and
diagnosed on the basis of microcalcifications alone [69]. Prominent tissue necrosis
is also observed in other cancer types and can similarly be an important prognostic
indicator [76], such as in glioblastoma multiforme [1,70] and colorectal cancer [77].
Secretions by necrotic cells may promote inflammation in neighboring “normal”
tissue (tumor-associated stroma) [9, 24, 31], thereby promoting progression from in
situ to invasive carcinoma [26, 37, 79].

In this chapter, we shall explore recent efforts by our modeling groups to
shed light on the impact of necrotic tissue biomechanics on tumor progression
through increasingly sophisticated computational modeling. After a brief intro-
duction in Section 2 to the biological background of apoptosis, necrosis, and cal-
cification, we examine our earliest continuum-scale modeling of necrotic tumor
growth [51, 58–62] in Section 3. Continuum conservation laws describe the biome-
chanics, while smaller scales are integrated as constitutive relations. The work gave
early and extensive insights on the impact of necrotic core biomechanics on tumor
growth, characteristic features, sizes, morphology, and stability.

In Section 4, we present a multiscale agent-based cell model [56] by Macklin and
colleagues and apply it to ductal carcinoma in situ. The model is the first to incorpo-
rate the vast range of time scales of necrosis and calcification; tissue-scale biome-
chanics emerge from interactions among time-varying forces, adhesion characteris-
tics, and individual cell volumes. This work, which included the first patient-specific
calibration to pathology, gave new mechanistic insights on the impact of multiscale
necrotic and calcified tissue biomechanics on features observed in patient pathology
and mammography. We conclude by discussing the next steps in multiscale mod-
eling of necrotic and calcified tissues, and we outline our vision for the future of
clinically-focused integrative computational oncology. It is our belief that integra-
tive modeling will increasingly push the envelope to advance the state-of-the-art
across biology, engineering, mathematics, computing, and the clinical sciences.
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2 Biological background

2.1 Basic biology of apoptosis

Apoptosis is a tightly-regulated, energy-consuming process [25, 36] that begins
when intrinsic or extrinsic signals activate initiator caspases (e.g., Caspase-9) in the
cytoplasm [25,38]. This is generally regulated in one of two ways. In the first, mito-
chondrial membranes are permeabilized and release cytochrome c and other proteins
into the cytoplasm to activate the initiator caspases. In the second, pro-apoptotic sig-
nals directly activate the initiator caspases independently of the mitochondria [38].
Mitochondria-regulated apoptosis disrupts ATP (energy) production by decreasing
the mitochondrial membrane potential. The cell’s remaining ATP store is depleted
by energy-intensive processes throughout apoptosis [80]. See [65, 80] for greater
detail on early regulation of apoptosis. While we do not describe them here, there
are also caspase-independent apoptosis mechanisms [25, 38].

After apoptosis is initiated, various ion pumps on the cell’s surface quickly re-
move water from the cell, resulting in significant volume loss [6,14,65,67]. See Fig.
2(top:a-b) and Fig. 2(bottom). Indeed, cell shrinkage and separation from neighbor-
ing cells are some of the first visible signs of apoptosis in histopathology. The initia-
tor caspases cleave and activate effector caspases (e.g., Caspase-3), which degrade
cellular proteins [25, 38]. The cytoplasm collects in bulbous “blebs” that are shed
from the cell. See Fig. 2(top:c). These blebs surround cell protein fragments with
intact membrane, and thus typically do not trigger inflammation [25, 44, 65].

Fig. 1 Left: Proliferation in the viable rim (yellow cells) generates a cell flux (dark gray arrows)
that can balance with fluid flux (pale blue arrows) created by lysing cells in the necrotic core (brown
cell debris), resulting in steady tumor sizes. Adapted with permission from [52]. Right: Typical
ductal carcinoma in situ (DCIS) duct cross-sections showing the outer viable rim, inner necrotic
core, calcifications, and an inflammatory response. Adapted from [56] with permission.
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Fig. 2 Apoptosis schematic. Top: (a-b) While pro-apoptotic signals work to activate initiator cas-
pases and then effector caspases to degrade subcellular structures and DNA, the cell rapidly shrinks
by removing fluid. (c) The cell sheds its cytoplasm as membrane-encapsulated blebs. (d-e) Chro-
matin is condensed. DNA is fragmented, encapsulated into apoptotic bodies, and phagocytosed by
nearby cells. Bottom: Preliminary simulation [64] of apoptotic cell volume composition (left) and
nuclear/total diameters (right). Figures provided courtesy of [64].

In the nucleus, the chromatin condenses and is henceforth degraded by en-
dogeneous endonucleases into short fragments of DNA (Fig. 2(top:d)). Protein
cross-linking (e.g., by transglutaminase [32]) helps to bundle these fragments into
coherent, membrane-encapsulated apoptotic bodies [4, 25, 44, 46], which are fi-
nally phagocytosed (ingested) and degraded by macrophages or other nearby cells
[25,44]. See Fig. 2(top:e). For more information on apoptosis, the reader is encour-
aged to consult several excellent reviews (e.g., [25, 44, 46, 65, 87]).

2.1.1 Estimates of apoptosis time scales

In [55–57], Macklin et al. analyzed the experimental biology and clinical literature
to estimate the main apoptosis time scales. The overall duration of apoptosis was
estimated at 8-9 hours, with an approximately 2-hour lag until detectable cleaved
Caspase-3 activity, and an additional hour of lag prior to detection by TUNEL assay.
Mumenthaler et al. are now directly measuring these and other apoptosis time scales
with in vitro experiments on MCF-7 and related breast cancer cell lines [68]. In
preliminary results, we observed cell water loss to be very fast: most water is lost
within the first hour of apoptosis. We also observed that the cytoplasm blebbs and
loses much of its volume within three hours, leaving a degrading nucleus for the
remainder of apoptosis. These preliminary observations are consistent with other
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experiments (e.g., [30, 88]), which estimated apoptosis to last 8-9 hours [30], and
measured rapid 60% volume losses early in apoptosis [88].

2.2 Basic biology of necrosis and calcification

In contrast to apoptosis, necrosis is a relatively energy-independent process, span-
ning a variety of time and spatial scales [46, 66]. In the context of cancer biol-
ogy, necrosis is most frequently the result of cellular energy depletion, rather than
a “planned” event [6]. Thus, while apoptotic cells generally appear sporadically
as isolated, shrunken cells, necrotic tumor cells are found in large contiguous re-
gions (i.e., necrotic cores) where oxygen and glucose are too low to sustain cell
survival [44, 87]. Necrosis also differs from apoptosis in that it triggers an inflam-
matory response, due to the dysregulated release of intracellular proteins into the
microenvironment [6, 46]. Indeed, inflammatory responses can readily be seen in
pathology images near necrotic tumors; see Fig. 1(right) for one such example.
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Fig. 3 Necrosis schematic. Top: (a-b) The necrotic cell swells until its membrane splits and leaks
its fluid content (c). Its remaining nuclear solid content degrades (d), and the remaining cytoplasm
degrades and is sometimes calcified (e). Bottom: Preliminary simulation [64] of early necrotic cell
volume composition (left) and nuclear/total diameters (right). Figures courtesy of [64].

In the early stages of necrosis (more properly called oncosis [46,65]), energy de-
pletion causes the cell’s ion pumps to shut down, resulting in rapid swelling by os-
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mosis. This swelling has traditionally been a key feature differentiating necrotic/on-
cotic cell death from apoptotic cell death in pathology and in vitro biology [44, 46,
65]. The cell swells to several times its original volume, lyses (splits open), and
slowly leaks fluids and other protein contents into the surrounding microenviron-
ment [46]. See Fig. 3(top:a-c and bottom:left). Disintegrating lysosomes can release
enzymes that help to further degrade the cell [6]. As in apoptosis, the nucleus dis-
plays some (irregular) chromatin condensation and shrinkage (pyknosis). However,
the DNA is not cleaved into regularly-sized fragments, nor is it encapsulated into
apoptotic bodies. Instead, it remains and degrades over time, eventually rupturing
and dissipating into the remaining cytoplasm. See Fig. 3(top:d and bottom:right). In
many tumors, necrotic tissue is removed by infiltrating macrophages; see the math-
ematical modeling of this process (and corresponding references) in [73]. We note
that this brief overview of early-to-mid necrosis is a simplification, and the lines be-
tween apoptosis and necrosis can be blurred. For example, apoptotic bodies that are
not cleared can become necrotic [44,65], and while necrosis is seemingly “passive”,
it involves numerous significant biochemical processes [7,46]. Excellent reviews of
necrosis can be found in [6, 7, 46, 66, 87].

Fig. 4 Cell volume compo-
sition during later necrosis:
Viewed on the long time scale
of necrosis and calcification,
early cell swelling and ly-
sis are a fast perturbation
on the longer-term trends of
solid content calcification and
degradation. Figure provided
courtesy of [64].
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2.2.1 Dystrophic calcification

In DCIS, the necrotic core is separated from immune cells (and the stroma) by an
intact basement membrane, preventing the removal of necrotic material. Instead, it
remains and continues to degrade. In this and other cancers where the necrotic ma-
terial is not cleared but rather persists for long periods of time, the necrotic core can
undergo dystrophic calcification [40, 47]. In this process, calcium ions interact with
remaining phospholipids in the necrotic cell (the membrane, vesicles, etc.) to nucle-
ate and grow calcium phosphate crystals [47]. See Fig. 3(top:e), the example in Fig.
1(right), and Fig. 4. How this process transpires in vivo is still poorly understood.
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2.2.2 Estimates of necrosis and calcification time scales

In [55–57], Macklin et al. estimated the various time scales of necrosis and calcifi-
cation, many of which have not been experimentally measured for carcinoma. We
estimated initial cell swelling and lysis to occur on the order of 2-6 hours. Based
upon experimental reports on aortic calcification [34, 42,48] and our previous com-
putations [55–57], we estimate calcification to take on the order of 15-20 days [56].
Based upon our insights from [56] (See Section 4.3) and the existence of necrotic
tissue with intense eosin staining (a sign of cytoplasm with significant water loss
and little calcification) and compact, partly-degraded nuclei, we estimate that water
loss occurs more quickly than pyknosis, and that pyknosis is a faster process than
calcification. We have recently hypothesized and found good evidence that calcifi-
cations degrade at a very long time scale (on the order of two to three months) [56].
See Section 4.5. Thus, necrosis and calcification have processes that operate on time
scales ranging from hours to months.

3 Early continuum modeling results: impact of necrotic core
mechanics on tumor progression, morphology, and stability

Following earlier tumor growth models that included necrotic cores [12,89,90] and
an earlier non-necrotic free boundary formulation of tumor growth [18], Macklin
and Lowengrub developed a model of non-symmetric avascular tumor growth in het-
erogeneous tissues which included necrosis [51, 58–62]. We modeled the tumor as
an incompressible fluid (with constant cell density) moving in a porous medium—
the ECM. We used a sharp interface approach, where Ω(t) denoted the moving
tumor volume with boundary Σ(t); we denoted the surrounding host tissue by ΩH.
In [60], we set ΩH to enclose Ω in an L≈ 100−200 µm ring of tissue:

Ω ∪ΩH = {x : |x−xcenter(t)| ≤ R(t)+L} , (1)

where
R(t) = max{|x−xcenter(t)| ,x ∈Ω(t)} , (2)

and where xcenter is the center of mass of Ω(t). We scaled space by L (the nutrient
diffusion length scale) and time by a mechanical relaxation time scale λ−1

R . The
time is rescaled in all plots to correspond to the cell mitosis time scale λ−1

M ≈ 24
hours. See [51, 58–60] for more details.

We introduced a single nondimensional “nutrient” σ which was required for cell
survival and drove growth. The nutrient was released by the host vasculature at
∂ (Ω ∪ΩH), diffused through the non-vascularized nearby host tissue ΩH to the
tumor, and was then consumed by tumor cells in Ω . Following [18] and as described
in [58], we make the quasi-steady assumption: nutrient transport and consumption
occur on much faster time scales than cell proliferation and tissue deformation, and
so on the time scale of simulation, ∂σ

/
∂ t ≈ 0. Thus, σ satisfies
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0 = ∇ · (DH∇σ) x ∈ΩH
0 = ∇ · (DT∇σ)−σ x ∈Ω (3)

subject to boundary and matching conditions

[σ ]Σ = 0 [D∇σ ·n]Σ = 0
σ(x)

∣∣
∂ (ΩH∪Ω)

= 1, (4)

where for any x ∈ Σ , the jump function [ f (x)]Σ is defined as

[ f (x)]Σ = lim
Ω∋y→x

f (y)− lim
ΩH∋y→x

f (y). (5)

In [60], DT = 1 as a result of nondimensionalization. The nutrient is used to implic-
itly define viable and necrotic regions (ΩV and ΩN, respectively) of the tumor:

ΩV = {x ∈Ω such that σ(x)≥ σN}
ΩN = {x ∈Ω such that σ(x)< σN} ,

(6)

where σN is the necrotic threshold value of σ . Note that Ω = ΩV∪ΩN.
Within the tumor’s viable rim, cells were assumed to proliferate at a rate propor-

tional to σ and apoptose at a constant background rate. In ΩN, the model degraded
necrotic debris and released volume, acting as a biomechanical stress relief. We
assumed the host tissue was in homeostasis (proliferation and apoptosis were in
balance), but cells and tissue could be displaced by forces generated by the tumor.
The tissue moved with velocity u in response to forces generated by cell prolifera-
tion and death. Under the incompressibility and constant cell density assumptions,
the local rate of volume change is given by ∇ ·u. In dimensionless form,

∇ ·u = 0 x ∈ΩH
∇ ·u = G(σ −A) x ∈ΩV
∇ ·u =−GGN x ∈ΩN,

(7)

where G, A, and GN are dimensionless parameters characterizing the rates of cell
proliferation, apoptosis, and necrotic tissue volume loss relative to the time scale
λ−1

R . See [60] for greater detail on the nondimensionalization and these parameters.
We introduced a dimensionless proliferation-generated mechanical pressure p

as a simplified model of tissue stress, and assumed a Darcy flow response: cells
can respond to the pressure by overcoming cell-cell and cell-ECM adhesion and
moving through the porous medium (the ECM) supporting the cells. Moreover, the
ECM itself can deform in response to p. Hence, u = −µ∇p, where µ is the tissue
mobility (its ability to respond to pressure gradients). Assuming constant cell-cell
adhesive forces and cell density throughout ΩV, cell-cell adhesion can be modeled
as a surface tension proportional to the curvature κ along Σ(t). Thus, as in [18],

−∇ · (µH∇p) = 0 x ∈ΩH

−∇ · (µT∇p) =
{

G(σ −A) x ∈ΩV
−GGN x ∈ΩN

(8)
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subject to boundary and matching conditions

[p]Σ = κ [µ∇p ·n]Σ = 0
p(x)

∣∣
∂ (ΩH∪Ω)

= 0. (9)

In [60], µT = 1 as result of nondimensionalization.
We implicitly tracked the moving boundary position using the level set method:

an auxiliary distance function ϕ satisfies ϕ < 0 in Ω , and ϕ > 0 in ΩH, ϕ = 0 on Σ ,
the outward normal vector is given by n = ∇ϕ , and κ = ∇ ·n. The outward normal
velocity of Σ(t) is obtained by evaluating u ·n = − limΩ∋y→x µT∇p(y) ·n for any
x ∈ Σ . The motion of Σ then becomes an advection equation for ϕ [51, 58–62].
We solved Eqns. (3-4) and (8-9) using a second-order accurate ghost fluid method
[51, 58–62]. We let D = DH/DT and µ = µH/µT denote the relative oxygenation
and mechanical compliance of the surrounding host tissue, respectively.

3.1 Impact of necrotic core biomechanics: key results

As in earlier tumor spheroid models [12, 89, 90] and early non-symmetric necrotic
tumor simulations in [93], our theoretical and numerical analyses [51] showed that
even with A = 0, volume creation in the proliferative rim could balance with volume
loss in the necrotic core, leading tumor spheroids to grow to a steady size. Our work
had an additional insight: even during growth (and overall morphological instabil-
ity), tumor proliferation and necrotic volume loss could equilibrate locally, leading
to (1) a near-constant necrotic volume fraction, and (2) the emergence of charac-
teristic feature sizes and shapes. For example, a tumor growing into well-perfused
(D > 1), mechanically-stiff (µ ≤ 1) tissue develops invasive fingers with a charac-
teristic width. See Fig. 5(left) for such an example.

The qualitative tumor behavior (classified as fragmenting, fingering, or hol-
low/compact growth) was primarily dependent upon the microenvironmental pa-
rameters D and µ . However, the quantitative behavior—viable rim thickness, ne-
crotic volume fraction, overall growth rate, etc.—was strongly dependent upon tu-
mor cell characteristics, particularly the necrosis parameters σN and GN. The viable
rim size was determined by the balance of nutrient penetration into the host tissue
(D), apoptosis (A), and the tumor cells’ resistance to hypoxia (σN). The size of the
necrotic core was primarily determined by the rate of volume loss in necrotic tissue
(GN). See Fig. 5(right), where we show how the tumor varied with GN for several
values of G. A key finding was that while moderate rates of necrotic volume loss
indeed contribute to the emergence of a steady state size for the spherical case, fast
necrotic volume loss (large GN) can destabilize the tumor morphology.

This work revealed a few outstanding problems with continuum necrosis mod-
els of the time. First, defining the necrotic region implicitly through σ as in Eqn. 6
could cause unexpected behavior for complex tumor morphologies. Particularly un-
stable tumors could experience frequent connection and disconnection of invasive
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Fig. 5 Left: Growth of a necrotic avascular tumor into well-perfused, mechanically-stiff tissue.
The invasive “fingers” and necrotic regions acquire relatively fixed, characteristic sizes.
Right: Impact of the rate of cell proliferation (G) and necrotic volume loss (GN) on invasive fin-
gering growth. G acts primarily as a time scale (tumor morphologies are the same but evolve more
quickly with increased G), whereas larger values of GN can destabilize the morphology (seen here
as changing rounded protrusions into invasive fingers). Legend: Viable (gray) and necrotic tissue
(black) grow in host tissue (white). Figures adapted with permission from [60].

Fig. 6 A simulation of re-
peated encapsulation of
host tissue by a growing
tumor [58]. Legend: White:
viable tumor. Black: necrotic
tumor. Figure adapted with
permission from [58].
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fingers or bulbs [51, 58, 60]. (See Fig. 6 for an example of repeated encapsulation
of host tissue.) Connectio or reconnection of invasive fingers or bulbs lead to rapid
depletion of nutrient in the newly encapsulated host and tumor tissue, leading to a
jump in necrosis. Subsequent disconnection would rapidly reperfuse the encapsu-
lated regions, leading to the condition where σ > σN in previously necrotic tissue.
This necrotic tissue would “come back to life”—an impossibility. We solved these
problems by introducing an additional level set function ϕN to separately track the
necrotic core boundary [61, 62].
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Second, because the continuum model linked together many biophysical effects
into very few parameters (much to the benefit of mathematical analysis!), it was
difficult to directly calibrate the model to experimental measurements. Model cali-
bration required force-fitting the parameters to match experimental growth rate mea-
surements, and then tuning the remaining parameters to match the simulated mor-
phologies (as informed by parameter space investigations) to clinical or other obser-
vations (e.g., as in [33]). While this makes data-driven simulations possible, it can
hinder the acceptance of mathematical modeling in the biological and clinical com-
munities, who are concerned that complex models with too many free parameters
can be tuned to any desired behavior without necessarily being biologically correct.
Upscaling mechanistic cell-scale models can solve such problems, as in [23].

Lastly, even if the necrotic biomechanical properties can be rigorously estimated,
continuum models like this one would need further refinement to incorporate both
the slow and fast dynamics known to play a role in necrosis. In the next section, we
will next describe a mechanistic, patient-calibrated agent-based model developed by
Macklin and collaborators in [56] to examine these and other issues.

4 Recent agent-based modeling results: impact of necrotic core
biomechanics on DCIS

Agent-based modeling affords us the opportunity to examine the multiscalarity of
necrosis and calcification by implementing both fast and slow time scale processes
in individual cells and investigating the emergent whole-tumor biomechanics and
clinical progression. We present recent work by Macklin et al. in simulating DCIS
for individual patients [54–57]. The work discussed below includes the most de-
tailed model of cell necrosis to date, and the first model of calcification. It also
includes the first patient-specific calibration method to use clinically-accessible
pathology from a single time point, as might be available in a standard biopsy.

4.1 Model overview

In [54–57], Macklin et al. developed a patient-calibrated, lattice-free agent-based
cell model and applied it to DCIS. Each virtual cell (an agent) has a position x,
velocity v, and time-dependent physical properties. In particular, each cell has a
volume V (t) and nuclear volume VN(t), which can readily be expressed as equivalent
spherical cell and nuclear radii R(t) and RN(t), respectively. The cell also has a
maximum adhesion interaction distance RA > R(t), which models both the cell’s
deformability and uncertainty in its morphology [56]. See Fig. 7(left).

The cell’s velocity (and hence position) is governed by the balance of forces
acting upon it: cell-cell adhesion (Fcca) and “repulsion” (resistance to deformation:
Fccr), cell-BM adhesion and repulsion (Fcba and Fcbr), fluid drag (−νv), cell-ECM
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Fig. 7 Left: Cell position x, maximum adhesion interaction distance RA, volume V (light gray
area), nuclear volume VN (dark gray area), and equivalent radii R and RN.
Right: Key forces in the model, labeled for cell 5. Figures reprinted with permission from [56].

adhesion (Fcma =−ccmaE, where E is the local ECM density), and the net locomo-
tive (motile) force Floc. These forces are balanced by Newton’s second law (conser-
vation of linear momentum). As in [22, 35, 75], we use the “inertialess” assumption
of fast force equilibration to explicitly express the velocity of cell i:

vi =
1

ν + ci
cmaE︸ ︷︷ ︸

cell-medium interactions


cell-cell interactions︷ ︸︸ ︷

N(t)∑
j=1
j ̸=i

(
Fi j

cca +Fi j
ccr
)
+

cell-BM interactions︷ ︸︸ ︷
Fi

cba +Fi
cbr +Fi

loc

 , (10)

where N(t) is the number of simulated cells/agents at time t. For this discussion, we
set E ≡ 0 and Floc = 0 to model nonmotile cells contained in a lumen without ECM.
See [56] for the specific forms of the forces, which were modeled using potential
functions with finite interaction distances, consistent with the maximum adhesion
interaction distance RA. These forces are labeled for Cell 5 in Fig. 7(right).

Each cell has a phenotypic state S(t) ∈ {A,P,Q,N}, where A cells are apop-
tosing, P cells are proliferating (in non-G0), Q cells are quiescent (in G0), and N
cells are necrotic. Transitions between phenotypic states are governed by microen-
vironment- and signaling-dependent stochastic processes. For example, quiescent
cells enter the cell cycle with a (nondimensionalized) O2-dependent probability:

Prob(S(t +∆ t) = P|S(t) =Q) = 1− exp

(
−
∫ t+∆ t

t
αQP

O2(s)−O2,hypoxic

1−O2,hypoxic
ds

)

≈ αQP

(
O2(t)−O2,hypoxic

1−O2,hypoxic

)
∆ t, (11)
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where αQP is the normoxic Q→P transition rate (when O2 = 1), and O2,hypoxic is
the hypoxic oxygen threshold. TheQ→A transition is similar but does not depend
upon O2. Cells become irreversibly necrotic (S = N ) when O2 < O2,hypoxia. The
proliferative and apoptotic states have fixed durations τP and τA. Cell volume and
other key properties are controlled by a “sub-model” for each phenotypic state. Pro-
liferating cells in P divide in half after progressing through S, G2, and M; their two
daughters spend G1 growing (linearly) to their mature volumes and then return toQ.
Apoptotic cells are removed from the simulation after τA. We do not impose contact
inhibition (a common feature for cellular automata models: reduced Q→P transi-
tions for cells when surrounded by neighbor cells); this is because patient pathology
for Ki-67 (a proliferation marker) frequently shows proliferating cells that are com-
pletely surrounded by other cells. As we shall see, a properly-calibrated mechanistic
model can predict quantitatively-reasonable DCIS growth without need for contact
inhibition. See [56] for full details on the proliferative and apoptotic sub-models.

4.1.1 Necrosis sub-model

Let τ denote the elapsed time spent in the necrotic state. Define τNL to be the length
of time for the cell to swell, lyse, and lose its water content, τNS the time for all
surface receptors to become functionally inactive, and τC, the time for calcification
to occur. We assume that τNL < τNS < τC.

We assume a constant rate of calcification, reaching a radiologically-detectable
level at τ = τC. If C is the nondimensional degree of calcification (scaled by the
detection threshold), then C(τ)= τ

/
τC for 0≤ τ ≤ τC, and C(τ)= 1 otherwise. (We

do not track further calcification after τC.) We model the degradation of any surface
receptor S (scaled by the non-necrotic expression level) by exponential decay with
rate constant log100/τNS, so that S(τNS) = 0.01 S(0). We set S(τ) = 0 for τ > τNS.

To model the necrotic cell’s volume change, let fNS be the maximum percentage
increase in the cell’s volume (just prior to lysis), and let V0 be the cell’s volume at
the onset of necrosis. Then we model:

V (τ) =

{
V0

(
1+ fNS

τ
τNL

)
if 0≤ τ < τNL

VN if τNL < τ.
(12)

To model uncertainty in the cell morphology during lysis, we randomly perturb its
location x such that its new radius R(τNL) is contained within its swelled radius

R(0)(1+ fNS)
1
3 .

4.1.2 Other model details and numerical implementation

As we described in [56], microenvironmental quantities are modeled with reaction-
diffusion equations throughout the computational domain. Uptake terms (e.g., for
O2) are created by a coarse-graining technique: first construct a high-resolution up-
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take term that resolves each cell’s volume, then average it across a lower-resolution
mesh (mesh size ∼ 1/10 the appropriate diffusion length scale) before solving the
reaction-diffusion equation. We apply Dirichlet conditions on the BM, and use Neu-
mann conditions wherever the lumen intersects the computational boundary.

We represent the basement membrane using a signed distance function d satis-
fying d > 0 in the lumen, d < 0 in the stroma, d = 0 on the basement membrane,
and |∇d| ≡ 1. We introduce an auxiliary data structure to reduce the overall com-
putational cost fromO

(
N(t)2

)
toO (N(t)), where N(t) is the number of simulation

objects at time t [56]. We implemented the model in cross-platform, object-oriented
C++; we currently plan to open source the simulation framework in the next year.
Towards that end, we introduced MultiCellXML, a new XML-based standard for
sharing multicell agent simulation data. The supplementary material for [56] include
sample DCIS simulation datasets (in MultiCellXML 1.0 format) and open source
postprocessing and visualization code. See http://MathCancer.org/JTB DCIS 2012/.

4.1.3 Calibration to individual patients, and key necrosis parameter values

In [56], we introduced the first calibration method to use individual patient pathol-
ogy from a single time point, based upon processing several DCIS-affected ducts for
the patient, as described in [23]. The proliferative index (PI: the percentage of Ki-67
positive cells in the viable rim) and apoptotic index (AI: the percentage of cleaved
Caspase-3 positive cells in the viable rim) were combined with estimates of the pro-
liferative time scale (τP = 18 hours) and apoptotic time scale (τA = 8.6 hours) and
a population dynamic argument to calibrate theA←Q↔P phenotypic transitions
in the model. The cell density and experimental reports on cell mechanical response
to deformation (see the references in [56]) were used to calibrate the mechanical
parameters of the model. We calibrated oxygen transport by solving steady-state
reaction-diffusion equations in a simplified cylindrical duct geometry and matching
to the patient’s measured viable rim thickness. In [56], we applied the calibration
to a single anonymized DCIS patient with high-grade solid-type DCIS with come-
donecrosis; we show the simulation (in a 1.5 mm, 2-D longitudinal section of duct)
after 45 days of growth in this patient in Fig. 8. We recently combined this calibra-
tion method with an upscaling/coarse-graining argument to derive patient-specific
predictions of surgical excision volumes in [23].

4.2 DCIS growth is linear; mammography and pathology sizes are
linearly correlated; origins in necrotic cell water loss

In [56], we post-processed the simulation in one-hour increments to determine the
mean proliferative index, apoptotic index, viable rim thickness, and density as func-
tions of time, as well as the farthest viable cell position (xV(t): the virtual pathology
size) and the farthest calcified cell position (xC(t): the virtual mammography size).
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Fig. 8 Patient-calibrated DCIS simulation: After calibrating to a patient’s pathology data as
described in [56], we simulate 45 days of DCIS growth. Legend: Viable rim: The black curve
denotes the basement membrane. The small blue circles are cell nuclei, quiescent cells (Q) are pale
blue, proliferating cells (P) are green, and apoptosing cells (A) are red. Necrotic core: Necrotic
cells (N ) are grey until they lyse; their solid fraction remains as debris (dark circles in center of
duct). The shade of red indicates the level of calcification; bright red debris are clinically-detectable
microcalcifications (N with t > τC). Bar: 100 µm. Adapted with permission from [56].

Open source C++ postprocessing code is given at MathCancer.org. We plot xV (solid
blue curve) and xC (dashed red curve) in Fig. 9(left). After early transient dynamics,
a linear (constant-rate) growth pattern emerges. The tumor advances at approxi-
mately 10.2 mm/year (obtained by the linear least-squares fit of xV), whereas the
calcification grows at 9.15 mm/year (linear least-squares fit of xC). Due to these lin-
ear growth rates, the tumor’s mammography and pathology sizes were predicted to
be linearly correlated, with a linear least-squares correlation:

pathology size≈ 0.4203 mm+1.117 mammography size, (13)

where all measurements are in mm. See the blue points in Fig. 9(right).
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Fig. 9 Left: Over long times, the DCIS advances linearly at approximately 1 cm/year (top curve);
the calcification also grows linearly. Right: The simulation (blue circles) predicts a linear corre-
lation between the DCIS mammography and pathology sizes. When extrapolated over two orders
of magnitude, the predicted correlation shows good agreement with clinical reports (red squares).
Figures reproduced with permission from [56].
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These predictions are qualitatively and quantitatively consistent with clinical es-
timates of DCIS growth. Linear DCIS growth has been reported in a clinical study
correlating changes in mammographic size with time between mammograms [15].
Another clinical study on microcalcifications reported that high-grade DCIS grows
at 7.1 mm per year (along an axis to the nipple) [86]. They also analyzed the data
in [15], deriving 13 mm/year and 6.8 mm/year mean and median growth rates, re-
spectively. According to our relationship in Eqn. 13, these correspond to pathology
growth rates on the order of 7.6 to 14.5 mm/year. Hence, both our mammography
and pathology growth rate predictions are quantitatively consistent with the clini-
cal literature. [78] compared the maximum calcification diameter in mammograms
(corresponds to xC) with the measured pathologic tumor size (corresponds to xV)
in 87 patients, finding a significant linear correlation between these measurements.
When we extrapolate our linear relationship in Eqn. 13 over two orders of mag-
nitude (from the 1 mm scale to the 1cm and 10 cm scales, approximating 1 to 10
years of growth), our extrapolated mammography-pathology correlation (the curve)
shows an excellent quantitative agreement with these 87 data points (red squares) in
Fig. 9(right). This is a surprising and interesting result, which suggests that absent
major alterations in signaling or microenvironmental factors, a patient’s long-time
growth dynamics may be established very early in progression.

These clinical phenomena can be understood as emergent from the underlying
biophysics of the viable rim and necrotic core. Due to oxygen transport limitations,
cell proliferation is confined to an approximately 80 µm viable rim. As the tumor
grows, a steady pattern of flux emerges: proliferating cells towards the tumor leading
edge are directed primarily towards empty space ahead of the tumor. Farther back,
it is more mechanically favorable for mitosing cells to push their neighbors towards
the duct center (against fewer cells) than along the duct (against more cells). Viable
cells get pushed into hypoxic regions of the lumen, where they become necrotic
and accumulate to fill the duct. This results in a linear growth pattern, as forward-
directed proliferative cell flux is constrained to the leading edge of the tumor.

Necrotic cell lysis sustains this process. Whenever a necrotic cell lyses, its for-
mer volume is converted to a small core of cellular debris and a large pocket of
(released) fluid, which is easily occupied by other cells. Thus, the earlier flux dy-
namic is maintained: proliferating cells on the outer edge of the duct push interior
cells towards the necrotic core, diverting much of the overall cell flux inwards rather
than towards the tumor leading edge. Hence, necrotic cell lysis acts as a mechanical
stress relief, analogously to the mechanical pressure sink terms used in [58–61].

This can be further confirmed by altering the necrosis model. In [55, 57], we
used a more gradual model of necrotic cell volume loss, where fluid “leakage” was
spread over τC = 15 days. The tumor advance accelerated as the viable rim grew,
consistent with exponential growth. In those simulations, the rate of biomechanical
stress relief in the necrotic core was too slow, causing more of the proliferative cell
flux to be directed along the duct, preventing sustained linear growth. When we
set τNL = τC = 15 days, we observed accelerating, exponential-like growth (blue
curve after initial transient dynamics) [56]. See Fig. 10(left). Generally, we found
that all simulations exhibited exponential-like growth for approximately τNL time
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after the first instance of necrosis. For sufficiently small τNL (under 1 day), the brief
exponential growth phase could not be detected. This mechanism suggested to us
that because the lumen/necrotic core acts as a “reservoir” of mechanical stress relief
to absorb proliferative cell flux, DCIS growth should be fastest in small ducts, and
slowest in larger ducts. In simulations, we found this to be supported [56]. See Fig.
10(right). We found an inverse relationship between duct radius Rduct and the DCIS
growth rate x′V (the red curve in Fig. 10(right)):

x′V ≈ 20.52+ e6.085−0.02584Rduct µm/day. (14)

Notice that as Rduct → ∞, we find a minimum growth rate of 7.5 mm/year, or a
mammography growth rate (by Eqn. 13) of 6.7 mm/year. Cases with slower growth
would need to be attributed to reduced oxygen or altered cell signaling.
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Fig. 10 Left: Delaying cell lysis leads to a completely filled necrotic core, which redirects prolif-
erative cell flux along the duct. This results in exponential-like growth (blue curve). Right: Larger
ducts have a greater “reservoir” available to absorb proliferative cell flux through necrotic cell lysis,
leading to slower growth than in smaller ducts. Figures reproduced from [56] with permission.

4.3 Proliferative cell flux and multiscale necrosis lead to a
stratified, age-structured necrotic core

Thus far, we have focused upon the gross macroscopic behavior of DCIS: the emer-
gent growth rate and the relationship between mammography and pathology. We
now turn our attention to the finer microstructure of the tumor. In Fig. 11(top), we
highlight several characteristic cross-sections of our DCIS simulation at 45 days.

In Slice a, there is a viable rim of thickness comparable to the remainder of the
tumor, but with little visible evidence of necrosis. Biologically, this section of the
tumor is no different than portions with necrosis (i.e., hypoxia is significant). This
raises the possibility that in cases where too few ducts are sampled, a pathologist
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Fig. 11 Top: Patient-calibrated DCIS simulation from Fig. 8, with selected cross-sections high-
lighted to emphasize the emergent necrotic core microstructure. Near the leading edge (slice a),
little necrotic debris has accumulated in the lumen. Farther back, relatively intact necrotic debris
forms a ring near the necrotic boundary (slice b). Farther still, the lumen is completely filled with
necrotic debris, with increasing degradation towards the center (slice c). Farther back, the oldest
material is calcified, surrounded by relatively degraded debris (slice d). Calcification increases with
distance from the leading edge (slice e). Reproduced with permission from [56].
Bottom: All the predicted necrotic core microstructures are observed in the patient’s hematoxylin
and eosin (H&E) pathology. Red arrows (pointing up and right) show necrotic debris with rel-
atively intact nuclei. Green arrows (pointing down and left) show relatively degraded necrotic
debris. White vertical arrows show calcification. Black arrows show the mechanical tear at the per-
inecrotic boundary. Simulated slice b predicts the microstructure seen in duct 1. Simulated slice c
corresponds to duct 2. Simulated slice d corresponds to duct 3. Simulated slice 3 corresponds to
duct 4. Inset: A duct similar to slice a. Pathology images adapted with permission from [56].

may fail to observe comedonecrosis, potentially (and incorrectly) changing the pa-
tient’s Van Nuys Prognostic Index score [84] and affecting treatment decisions. This
could be particularly true in cases where ⟨PI⟩/τP ≈ ⟨AI⟩/τA, as little net cell flux
from the viable rim to the necrotic core would be expected [56].

Farther from the tumor leading edge in Slice b, a ring of necrotic debris surrounds
a hollow duct lumen. In cross sections like this, there has not yet been sufficient tu-
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mor cell flux from the viable rim to completely fill the lumen with necrotic debris.
Farther still from the leading edge in Slice c, there has been sufficient cell flux to
fill the lumen with necrotic material; an outermost band of intact necrotic nuclei
encircles a central region of mostly degraded nuclei (modeled here simply as partly
calcified). Farther from the leading edge in Slice d, a thin outermost band of rel-
atively intact necrotic nuclei surrounds an inner band of mostly degraded necrotic
material and an inner core of microcalcification. In Slice e, the microcalcification is
larger, and the outermost band of intact necrotic nuclei is largely gone. The necrotic
core is increasingly calcified with distance from the tumor leading edge.

Overall, the model predicts an age-ordered necrotic core microstructure, with
oldest material in the center surrounded by increasingly newer, less-degraded, and
less-calcified material. Indeed, all these cross-sections can be found in our patient.
See the hematoxylin and eosin (H&E) stained section in Fig. 11(bottom). Slice b
corresponds to Duct 1, where a ring of relatively intact necrotic debris (red arrows)
surrounds an as-yet unfilled lumen. Slice c corresponds to Duct 2, where the entire
lumen has been filled necrotic debris, which is more intact at its outer edge (red
arrow), and increasingly degraded in its center (green arrow). Slice d corresponds
to Duct 3, where a thinner ring of mostly intact nuclei (red arrows) surrounds an
intermediate layer of mostly degraded debris (green arrows) and a central core of
microcalcifications (white arrows). (Note that Duct 3 is likely the intersection of
two or more ducts near a branch point.) Slice e corresponds to Duct 4, where a ring
of degraded necrotic debris (green arrow) surrounds a larger calcification (white
arrow). The inset shows a different duct from the patient that is similar to slice a.

This stratified structure arises from the overall flux of cells from the viable rim
into the necrotic core, working in concert with the multiple time scales during necro-
sis. If any of these scales were changed or removed, the microstructure would be al-
tered. Indeed, better accounting for the time scales of nuclear degradation and fluid
loss would likely improve the quantitative match to the patient pathology [56, 64].

4.4 Fast time scale necrotic cell lysis and volume loss are
responsible for mechanical “tears” at perinecrotic boundary

One notable feature of nearly every DCIS pathology section is a “tear” at the per-
inecrotic boundary. See the black arrows in Fig. 11(bottom). The conventional wis-
dom is that these tears are not actually present in vivo, but are instead artifacts that
arise from tissue dehydration during sample preparation.

In [57], we implemented a preliminary necrosis sub-model where fluid volume
was lost through the membrane gradually throughout necrosis, at a rate proportional
to surface area and the remaining fluid fraction:

dV
dτ

= −
(

2
τN

log100
)(

4πR2)(V −VS

V

)
, (15)
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Fig. 12 Early DCIS simu-
lations [57] neglected fast
necrotic cell swelling and im-
plemented a gradual volume
loss over 15 days. The sim-
ulations could not reproduce
the tear at the perinecrotic
boundary. Necrotic cell ly-
sis was too slow to sustain
linear growth. Adapted with
permission from [57].

where 0 < τ < τC = τN is the elapsed time since entering the necrotic state, VS is
the cell’s solid fraction, and the coefficient was chosen to make this nonlinear ODE
satisfy V (τN) ≈ VS. Fast cell swelling and lysis were neglected. The simulation,
plotted at 30 days in Fig. 12, did not predict a tear at the perinecrotic boundary. We
therefore hypothesized that if the perinecrotic tear is not an artifact, it must be caused
by a fast time scale process. In [56], based upon a more thorough review of necrosis
biology (see Section 2.2), we implemented the current model with rapid necrotic
cell swelling followed by rapid volume loss. These simulations did recapitulate the
perinecrotic tear. See the tumor leading edge in Fig. 8.

The mechanistic model is based upon the balance of actual forces with biophy-
sically sound parameter values, is calibrated to actual patient data, and successfully
makes quantitative, validated predictions on DCIS progression. In light of this care
we put into the biological and clinical accuracy of the model, we conclude that me-
chanical separation of the viable rim and necrotic core at the perinecrotic boundary,
although exacerbated by tissue dehydration, is in fact a real phenomenon, rather than
a simple artifact. Based upon this new insight, we now interpret tears and cracks in
pathology sections as indicators of a tissue’s local biomechanical strength.

4.5 Evidence of calcification degradation at a very long time scale

Our simulations (Fig. 8) predict a linear/casting-type calcification, where the cal-
cification forms a long, solid “plug” in the center of the duct. See Fig. 13 for a
mammographic image of casting-type microcalcifications. Other calcification mor-
phologies (e.g., fine pleomorphic) are not predicted by the biophysical assumptions
of our model. While casting-type calcifications correlate with comedonecrosis [85],
they are only present in approximately 30-50% of DCIS [28,39]. Moreover, casting-
type calcifications can be absent from small, high-grade DCIS, while present in
larger, low-grade DCIS [28]. Additional biophysics (e.g., secretions, heterogeneous
adhesion mechanics, or degradation over long time scales) are required to model
the broader spectrum of observed calcifications in DCIS. Our H&E images (Fig.
11) support this idea. The central regions of many calcifications—which we have
shown are associated with the “oldest” necrotic material—demonstrate significant
cracks that suggest extensive degradation and weak cohesion.
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Fig. 13 Mammogram of a
DCIS patient with character-
istic casting-type microcal-
cifications, labeled here with
red arrows. Image courtesy
of Andy Evans, University of
Dundee / NHS Tayside.

Phospholipids—such as those from subcellular structures that likely form a
“backbone” for the formation of microcalcifications—degrade with half-lives on
the order of 80 [3] to 300 hours [45] in non-pathologic tissue. Given this time scale,
we would expect necrotic tissues and their associated microcalcifications to degrade
over the course of a few months. This may partly explain rare cases of spontaneous
resolution of calcifications in mammograms, where calcifications become smaller
or occult without alternative explanations [81]: in slow-growing DCIS (e.g., with
both high PI and AI, as observed in high-grade DCIS [11]), calcifications may be
degraded more quickly than they are replaced by new necrotic material.

5 Discussion and looking forward

As we have seen, tissue necrosis and calcification are truly multiscale processes.
Early tissue-scale modeling [51, 58–62] (Section 3) provided key insights on the
role of tissue necrosis in steady tumor spheroid sizes, and its potentially destabiliz-
ing role when volume loss is rapid. Notably, these models can sufficiently predict
the impact of the necrotic core on the long-time volume and morphology of a tumor,
allowing quantitative predictions of progression. However, continuum modeling has
thus far focused on the slower time scale processes of fluid loss and solid degrada-
tion; reformulation would be required to incorporate fast time scale processes like
swelling and lysis. This is an interesting shortcoming, given that these are key fea-
tures used to differentiate necrosis (and oncosis) from apoptosis in pathology.

Models that consider the full spread of time scales in necrosis and calcification
can produce a rich spectrum of behaviors that match observations in pathology [55–
57] (Section 4). As hypothesized in [57] and investigated in [56], fast cell swelling
and lysis—so fundamentally characteristic of early necrosis—are responsible for the
tears (“artifacts”) at the perinecrotic boundary that we consistently see in pathology.
From a continuum point of view, these are rapid perturbations that create persistent
and sharp discontinuities in the cell and necrotic debris distributions.

The simulated tumor microstructure—a viable rim (with greatest proliferation at
the outermost edge) surrounding a stratified, age-structured necrotic core—arises
from the multiscalarity of tissue necrosis and calcification. In the necrotic core,
the structure mirrors tissue age due to the steady flux from the viable rim into the
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necrotic core: the newest, least degraded material surrounds increasingly degraded
debris, with central calcifications in the oldest tissues [56]. All these features are
consistently observed in patient pathology. Our work revealed a long-time deterio-
ration of calcifications that may explain key features in mammography.

5.1 Next-generation hybrid multiscale modeling

Improved multiscale and hybrid mathematics and computational techniques are nec-
essary for further advances. In the agent-based model, each necrotic cell agent must
remain in memory on the order of simulated months; by later times, necrotic agents
outnumber viable agents by three to one or more. And yet the vast majority of
these objects are engaged in the slow time scale processes of calcification and solid
degradation—processes that are well-suited to continuum modeling!

Lowengrub and colleagues are now developing a sophisticated continuum model
of necrotic cell calcification in DCIS [17]. We apply a phase field approach [91] to
model the tumor as a mixture of fluid, extracellular matrix, and cells. The model
can separately track the necrotic and calcified cell fractions. We also include a so-
phisticated model of the basement membrane, which can deform in response to
mechanical stresses introduced by the growing tumor [16]. Preliminary results reca-
pitulate the gross features observed in DCIS pathology: a viable rim of appropriate
thickness surrounding a necrotic core with a calcified center [17]. See Fig. 14.

Fig. 14 Preliminary contin-
uum simulation of solid-type
DCIS with comedonecrosis
and calcifications [17].
Legend: Green curve: de-
formed basement membrane.
Red curve: viable tumor
boundary. Magenta curve:
calcified necrotic debris.
White shading: non-calcified
necrotic tissue.

We plan to integrate these discrete and continuum approaches in a hybrid model,
as outlined in [43, 50]. A key issue is determining the rate constants for the contin-
uum model. As water loss in necrotic cells does not occur at a fixed rate, it may be
best to simulate using the discrete model until most fluid has been lost, then “convert
mass” to the continuum model for the slower time scale processes. A more detailed
analysis of the full agent-based model could yield the correct average per-volume
rate of volume loss in the necrotic tissues, similarly to the upscaling approach we
developed in [23, 54]. Other approaches may include introduction of an age struc-
turing variable, as is often used today in mathematical ecology (e.g., [5, 41, 49]).



24 Macklin, Mumenthaler and Lowengrub

5.2 A vision for quantitative, integrative computational oncology

An integrative modeling approach—where clinicians, modelers, and biologists work
in close-knit teams throughout the modeling process—is necessary to push compu-
tational oncology towards clinical application. Conversely, just as the space race in
the 1950s and 1960s fueled advances throughout engineering, physics, and mathe-
matics, efforts to push the envelope in patient-specific modeling are advancing the
state-of-the-art in mathematical modeling, computational algorithms, experimental
methods, and clinical practice. Moreover, quantitatively and explicitly stating our
working biological hypotheses gives us the opportunity to rigorously and systemati-
cally test and refine what can best be described as current cancer biology orthodoxy.
We close this chapter by outlining our vision of clinically-oriented integrative com-
putational oncology, and its possible impact beyond the clinic.

Model Design: Clinicians and modelers jointly identify important unanswered clin-
ical questions. This helps modelers avoid investigating unnecessary tangents while
bringing fresh perspective to the clinicians. Biologists help modelers identify work-
ing hypotheses around which to build their models. While explicitly writing these
out and “translating” them to code, we can evaluate what is and is not truly known
in cancer biology. Lastly, while developing the model and numerical algorithms, as-
sessing the expected clinical and experimental data helps in choosing the modeling
approach; the model may expose needs for additional experimental measurements.

Data generation, model calibration, and early testing: Modelers and clinicians
jointly plan studies and choose which clinical data to gather (pathology, radiology,
case histories, etc.). Biologists and modelers jointly plan experiments to supplement
the clinical data and inform the model’s constitutive relations. These data are inte-
grated into the model with the help of statisticians, image processing specialists, and
others. Early simulations help test and refine the data, model, and calibration.

Simulation, analysis, validation, and feedbacks: The calibration procedure is ap-
plied to simulate cancer in individual patients. The simulation data are postpro-
cessed, yielding quantitative predictions that we validate for each patient. This quan-
titative focus allows us to assess and improve our underlying biological hypotheses.
If the predictions are accurate, trials may be planned to assess the model’s ability to
assist individual treatment decisions. The modelers, clinicians, and biologists jointly
identify future refinements and experiments. They also jointly select new modeling
foci as suggested by both clinical needs and model-derived insights.

5.2.1 Application of integrative modeling to breast cancer

This approach guides our work on breast cancer. We have built a team that now
includes oncologists, pathologists, radiologists, biologists and modelers [63], and
we are continuing to recruit complementary expertise (e.g., in analytical pathology,
tissue bioengineering, etc.). We have jointly identified that patient-specific predic-
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tions of progression from in situ to invasive carcinoma would be of immense clinical
value, and would naturally build upon our increasingly accurate in situ models. To
that end, we are developing key modeling technologies, such as improved BM and
ECM mechanics [20] and multiscale matrix metalloproteinase transport-reaction ki-
netics [19]. Early modeling results will help guide future experimental design.

Given the critical role of tissue necrosis in DCIS progression, we are develop-
ing next-generation models of intracellular fluid transport, solid synthesis, and dys-
trophic calcification to more accurately describe individual cell volume and compo-
sition changes during these processes [64], based upon in vitro measurements we
are currently gathering [68]. By this approach, it should soon be possible to accu-
rately simulate common pathology stains based upon each cell agent’s composition.
This, in turn, should make possible new and innovative quantitative comparisons
to patient pathology, better refinement of the otherwise nigh-unmeasurable necrosis
time scales, and ultimately more accurate predictions of clinical progression.

The interested reader can find up-to-date information on these efforts (includ-
ing frequent news postings, animations, tutorials, simulation data, and software)
at MathCancer.org. We also encourage the interested reader to visit the newly-
established Consortium for Integrative Computational Oncology at the University of
Southern California, where we are developing this approach with a focus on building
community and training the next generation of interdisciplinary cancer scientists.

5.2.2 Broader implications and spillover benefits

The quest for quantitative accuracy in patient-specific modeling drives advances
in mechanistic modeling. Quantitative testing allows us to choose among compet-
ing models, where multiple models may be qualitatively compelling, but fewer are
quantitatively reasonable. To the extent that rigorously-calibrated models can suc-
cessfully make quantitative predictions in individual patients, we gain new confi-
dence in the underlying models. Because the models are built to be universal (cancer
cells are just cells with different phenotypic parameter values), these advances will
be of use across computational biology. Likewise, efficient numerical simulation
of these increasingly sophisticated models is driving advances in applied parallel
computing and hybrid and multiscale modeling. Any derived algorithms will be of
benefit across applied mathematics and engineering.

If we should reach the point where we can integrate in vitro measurements with
clinical data to accurately predict cancer progression and therapy response in indi-
vidual patients, the implications are vast: new insights from wetlab biology could
be immediately evaluated for potential impact in individual patients in combina-
tion with current therapies, offering accelerated discovery and clinical translation.
Ultimately, it is our goal that this approach will help bridge the gap between theoret-
ical modeling, wetlab biology, and clinical practice to develop and deliver patient-
calibrated predictive tools. We believe that such tools will one day help clinicians
and their patients to make optimal, personalized treatment decisions that incorporate
both accepted clinical practice and cutting-edge research results.
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